Начало биологической эволюции на земле. §48. Возникновение биосферы и начало ее эволюции. Эволюционная теория Ч. Дарвина

2. Начальные этапы биологической эволюции

Появление примитивной клетки означало окончание предбиологической эволюции живого и начало биологической эволюции жизни.

Первыми возникшими на нашей планете одноклеточными организмами были примитивные бактерии, не обладавшие ядром, то есть прокариоты. Как уже указывалось, это были одноклеточные безъядерные организмы. Они были анаэробами, поскольку жили в бескислородной среде, и гетеротрофами, поскольку питались готовыми органическими соединениями «органического бульона», то есть веществами, синтезированными в ходе химической эволюции. Энергетический обмен у большинства прокариот происходил по типу брожения. Но постепенно «органический бульон» в результате активного потребления убывал. По мере его исчерпания некоторые организмы стали вырабатывать способы формирования макромолекул биохимическим путем, внутри самих клеток при помощи ферментов. В таких условиях конкурентоспособными оказались клетки, которые смогли получать большую часть необходимой энергии непосредственно от излучения Солнца. По этому пути и шел процесс формирования хлорофилла и фотосинтеза.

Переход живого к фотосинтезу и автотрофному типу питания явился поворотом в эволюции живого. Атмосфера Земли стала «наполняться» кислородом, который для анаэробов явился ядом. Поэтому многие одноклеточные анаэробы погибли, другие укрылись в бескислородных средах – болотах и, питаясь, выделяли не кислород, а метан. Третьи приспособились к кислороду. У них центральным механизмом обмена стало кислородное дыхание, которое позволило увеличить выход полезной энергии в 10–15 раз по сравнению с анаэробным типом обмена – брожением. Переход к фотосинтезу был длительным процессом и завершился около 1,8 млрд лет назад. С возникновением фотосинтеза в органическом веществе Земли накапливалось все больше энергии солнечного света, что ускоряло биологический круговорот веществ и эволюцию живого в целом.

В кислородной среде сформировались эукариоты, то есть одноклеточные, имеющие ядро организмы. Это были уже более совершенные организмы с фотосинтетической способностью. Их ДНК уже были сконцентрированы в хромосомы, тогда как у прокариотных клеток наследственное вещество было распределено по всей клетке. Хромосомы эукариотов были сконцентрированы в ядре клетки, а сама клетка уже воспроизводилась без существенных изменений. Таким образом, дочерняя клетка эукариот была почти точной копией материнской и имела столько же шансов на выживание, сколько и материнская.

Образование растений и животных.

Последующая эволюция эукариотов была связана с разделением на растительные и животные клетки. Такое разделение произошло в протерозое, когда Земля была заселена одноклеточными организмами.


С начала эволюции эукариоты развивались двойственно, то есть в них параллельно были группы с автотрофным и гетеротрофным питанием, что обеспечивало целостность и значительную автономность живого мира.

Растительные клетки эволюционировали в сторону уменьшения способности передвижения из-за развития жесткой целлюлозной оболочки, но в направлении использования фотосинтеза.

Животные клетки эволюционировали в сторону увеличения способности к передвижению, а также совершенствования способов поглощать и выделять продукты переработки пищи.

Следующим этапом развития живого стало половое размножение. Оно возникло примерно 900млн лет назад.

Дальнейший шаг в эволюции живого произошел около 700–800млн лет назад, когда появились многоклеточные организмы с дифференцированными телом, тканями и органами, выполняющими определенные функции. Это были губки, кишечнополостные, членистоногие и т.д., относящиеся к многоклеточным животным.

На протяжении всего протерозоя и в начале палеозоя растения населяют в основном моря и океаны. Это зеленые и бурые, золотистые и красные водоросли. Впоследствии в морях кембрия уже существовали многие типы животных. В дальнейшем они специализировались и совершенствовались. Среди морских животных той поры ракообразные, губки, кораллы, моллюски, трилобиты.

В конце ордовикского периода стали появляться крупные плотоядные, а также позвоночные животные.

Дальнейшая эволюция позвоночных шла в направлении челюстных рыбообразных. В девоне стали появляться уже двоякодышащие рыбы – амфибии, а затем насекомые. Постепенно развивалась нервная система как следствие совершенствования форм отражения.

Особо важным этапом в эволюции форм живого являлись выход растительных и животных организмов из воды на сушу и дальнейшее увеличение количества видов наземных растений и животных. В дальнейшем именно из них и происходят высокоорганизованные формы жизни. Выход растений на сушу начался в конце силура, а активное завоевание суши позвоночными началось в карбоне.

Переход к жизни в воздушной среде требовал от живых организмов очень многих изменений и предполагал выработку соответствующих приспособлений. Он резко увеличил темпы эволюции живого на Земле. Вершиной эволюции живого стал человек. Жизнь в воздушной среде «увеличила» массу тела организмов, в воздухе не содержатся питательные вещества, воздух иначе, чем вода, пропускает свет, звук, тепло, количество кислорода в нем выше. Ко всему этому необходимо было приспособиться. Первыми приспособившимися к условиям жизни на суше позвоночными были рептилии. Их яйца были снабжены пищей и кислородом для эмбриона, покрыты твердой скорлупой, не боялись высыхания.

Примерно 67млн лет назад преимущество в естественном отборе получили птицы и млекопитающие. Благодаря теплокровности млекопитающих они быстро завоевали господствующее положение на Земле, что связано с условиями похолодания на нашей планете. В это время именно теплокровность стала решающим фактором выживания.

Она обеспечивала постоянную высокую температуру тела и стабильность функционирования внутренних органов млекопитающих. Живорождение млекопитающих и вскармливание детенышей молоком явилось мощным фактором их эволюции, позволяющим размножаться в разнообразных условиях среды. Развитая нервная система способствовала разнообразию форм приспособления и защиты организмов. Произошло разделение хищно-копытных животных на копытных и хищников, а первые насекомоядные млекопитающие положили начало эволюции плацентарных и сумчатых организмов.

Решающим этапом эволюции жизни на нашей планете явилось появление отряда приматов. В кайнозое примерно 67–27 млн. лет назад приматы разделились на низших и человекообразных обезьян, являющихся древнейшими предками современного человека. Предпосылки появления современного человека в процессе эволюции формировались постепенно.

Сначала был стадный образ жизни. Он позволил сформировать фундамент будущего социального общения. Причем если у насекомых (пчелы, муравьи, термиты) биосоциальность вела к потере индивидуальности, то у древних предков человека, напротив, она развивала индивидуальные черты особи. Это явилось мощной движущей силой развития коллектива.


Рядов) Н. И. Вавилова привело к формулировке гипотез об эволюции на основе закономерностей, а не случайной изменчивости (номогенез Л. С. Берга, батмогенез Э. Д. Копа и др.). В 1920-1940-е г. г. в эволюционной биологии интерес к селекционистским теориям возродился благодаря синтезу классической генетики и теории естественного отбора. Разработанная в результате этого синтетическая теория эволюции...

Системы классификации К. Линнея, селекции растений и животных, сравнительной анатомии, сравнительной эмбриологии, сравнительной биохимии гипотезами, которые в совокупности составляют достаточно обоснованную теорию. 3. Эволюционное учение свободных падений Само понятие номогенез, и аргументы в пользу того, что, вопреки Дарвину, эволюция отнюдь не случайный, но закономерный процесс подробно...


Появление примитивной клетки означало окончание предбиологической эволюции живого и начало биологической эволюции жизни.

Первыми возникшими на нашей планете одноклеточными организмами были примитивные бактерии, не обладавшие ядром, то есть прокариоты. Как уже указывалось, это были одноклеточные безъядерные организмы. Они были анаэробами, поскольку жили в бескислородной среде, и гетеротрофами, поскольку питались готовыми органическими соединениями «органического бульона», то есть веществами, синтезированными в ходе химической эволюции. Энергетический обмен у большинства прокариот происходил по типу брожения. Но постепенно «органический бульон» в результате активного потребления убывал. По мере его исчерпания некоторые организмы стали вырабатывать способы формирования макромолекул биохимическим путем, внутри самих клеток при помощи ферментов. В таких условиях конкурентоспособными оказались клетки, которые смогли получать большую часть необходимой энергии непосредственно от излучения Солнца. По этому пути и шел процесс формирования хлорофилла и фотосинтеза.

Переход живого к фотосинтезу и автотрофному типу питания явился поворотом в эволюции живого. Атмосфера Земли стала «наполняться» кислородом, который для анаэробов явился ядом. Поэтому многие одноклеточные анаэробы погибли, другие укрылись в бескислородных средах – болотах и, питаясь, выделяли не кислород, а метан. Третьи приспособились к кислороду. У них центральным механизмом обмена стало кислородное дыхание, которое позволило увеличить выход полезной энергии в 10–15 раз по сравнению с анаэробным типом обмена – брожением. Переход к фотосинтезу был длительным процессом и завершился около 1,8 млрд лет назад. С возникновением фотосинтеза в органическом веществе Земли накапливалось все больше энергии солнечного света, что ускоряло биологический круговорот веществ и эволюцию живого в целом.

В кислородной среде сформировались эукариоты, то есть одноклеточные, имеющие ядро организмы. Это были уже более совершенные организмы с фотосинтетической способностью. Их ДНК уже были сконцентрированы в хромосомы, тогда как у прокариотных клеток наследственное вещество было распределено по всей клетке. Хромосомы эукариотов были сконцентрированы в ядре клетки, а сама клетка уже воспроизводилась без существенных изменений. Таким образом, дочерняя клетка эукариот была почти точной копией материнской и имела столько же шансов на выживание, сколько и материнская.

Образование растений и животных

Последующая эволюция эукариотов была связана с разделением на растительные и животные клетки. Такое разделение произошло в протерозое, когда Земля была заселена одноклеточными организмами.

С начала эволюции эукариоты развивались двойственно, то есть в них параллельно были группы с автотрофным и гетеротрофным питанием, что обеспечивало целостность и значительную автономность живого мира.

Растительные клетки эволюционировали в сторону уменьшения способности передвижения из-за развития жесткой целлюлозной оболочки, но в направлении использования фотосинтеза.

Животные клетки эволюционировали в сторону увеличения способности к передвижению, а также совершенствования способов поглощать и выделять продукты переработки пищи.

Следующим этапом развития живого стало половое размножение. Оно возникло примерно 900млн лет назад.

Дальнейший шаг в эволюции живого произошел около 700–800млн лет назад, когда появились многоклеточные организмы с дифференцированными телом, тканями и органами, выполняющими определенные функции. Это были губки, кишечнополостные, членистоногие и т.д., относящиеся к многоклеточным животным.

На протяжении всего протерозоя и в начале палеозоя растения населяют в основном моря и океаны. Это зеленые и бурые, золотистые и красные водоросли. Впоследствии в морях кембрия уже существовали многие типы животных. В дальнейшем они специализировались и совершенствовались. Среди морских животных той поры ракообразные, губки, кораллы, моллюски, трилобиты.

В конце ордовикского периода стали появляться крупные плотоядные, а также позвоночные животные.

Дальнейшая эволюция позвоночных шла в направлении челюстных рыбообразных. В девоне стали появляться уже двоякодышащие рыбы – амфибии, а затем насекомые. Постепенно развивалась нервная система как следствие совершенствования форм отражения.

Особо важным этапом в эволюции форм живого являлись выход растительных и животных организмов из воды на сушу и дальнейшее увеличение количества видов наземных растений и животных. В дальнейшем именно из них и происходят высокоорганизованные формы жизни. Выход растений на сушу начался в конце силура, а активное завоевание суши позвоночными началось в карбоне.

Переход к жизни в воздушной среде требовал от живых организмов очень многих изменений и предполагал выработку соответствующих приспособлений. Он резко увеличил темпы эволюции живого на Земле. Вершиной эволюции живого стал человек. Жизнь в воздушной среде «увеличила» массу тела организмов, в воздухе не содержатся питательные вещества, воздух иначе, чем вода, пропускает свет, звук, тепло, количество кислорода в нем выше. Ко всему этому необходимо было приспособиться. Первыми приспособившимися к условиям жизни на суше позвоночными были рептилии. Их яйца были снабжены пищей и кислородом для эмбриона, покрыты твердой скорлупой, не боялись высыхания.

Примерно 67млн лет назад преимущество в естественном отборе получили птицы и млекопитающие. Благодаря теплокровности млекопитающих они быстро завоевали господствующее положение на Земле, что связано с условиями похолодания на нашей планете. В это время именно теплокровность стала решающим фактором выживания.

Она обеспечивала постоянную высокую температуру тела и стабильность функционирования внутренних органов млекопитающих. Живорождение млекопитающих и вскармливание детенышей молоком явилось мощным фактором их эволюции, позволяющим размножаться в разнообразных условиях среды. Развитая нервная система способствовала разнообразию форм приспособления и защиты организмов. Произошло разделение хищно-копытных животных на копытных и хищников, а первые насекомоядные млекопитающие положили начало эволюции плацентарных и сумчатых организмов.

Решающим этапом эволюции жизни на нашей планете явилось появление отряда приматов. В кайнозое примерно 67–27 млн. лет назад приматы разделились на низших и человекообразных обезьян, являющихся древнейшими предками современного человека. Предпосылки появления современного человека в процессе эволюции формировались постепенно.

Сначала был стадный образ жизни. Он позволил сформировать фундамент будущего социального общения. Причем если у насекомых (пчелы, муравьи, термиты) биосоциальность вела к потере индивидуальности, то у древних предков человека, напротив, она развивала индивидуальные черты особи. Это явилось мощной движущей силой развития коллектива.



«Эволюция растений» - Происхождение наземных растений. Способы распространения диаспор. Размножение растений. Появление семенных растений. Выросты покровных тканей (энационное происхождение). Эволюция растений. Выполнила: Студентка v курса эколого- биологического факультета Лунина В. А. На рисунке ксилема окрашена красным цветом.

«Эволюционный процесс» - Примеры гомологичных органов: Крыло – измененная конечность. Дивергенция. Рукокрылые. 4.Имеют различное происхождение. Возникновение аналогичных органов (крыло бабочки и крыло птицы). Дивергенция- (расхождение признаков у родственных форм). Иглы барбариса. Парнокопытные. Крыло- вырост стенки тела. Примеры аналогичных органов:

«Эволюционное учение» - Г) раздел биологии, дающий описание всех существующих и вымерших организмов. Б) ароморфозы далеко не сразу обеспечивают организмам победу в борьбе за существование; А) искусственный и естественный отбор; При стабилизирующем отборе признаки организмов не изменяются: Начало биологической эволюции на Земле связывают с появлением:

«Развитие эволюционного учения» - Зародыши разных организмов. Чарльз Дарвин (1809 - 1882). Основная логика эволюционного учения. Доказательства эволюции: Морфологические (сравнительно-анатомические). Атавизмы. Доказательства эволюции: переходные формы. Автор первой эволюционной концепции. Асцидия: взрослый организм и личинка. Муха в янтаре.

«Биохимическая эволюция» - Матричный синтез начинался с РНК. Образование органических веществ из неорганических. Симбиотическое происхождение эукариотических клеток. Атмосфера и океан насыщаются альдегидами, спиртами, аминокислотами. Эволюция на уровне молекул РНК в коацерватах шла миллионы лет. Второй этап. Третий этап. Так возник древний мир РНК.

«Эволюционные теории» - К.Линней (1707-1778). Выделение градаций основывалось на степени усложнения нервной и кровеносной системы. Каким же образом человек создает новые породы животных и сорта растений? Можно ли согласиться со 2 законом Ламарка? Пименов А.В. Таким ученым оказался Чарлз Дарвин. Э.Дарвин. Ламарк формулирует два закона, по которым происходит эволюция.

Всего в теме 11 презентаций

Вспомните, какими признаками живые тела природы - организмы, отличаются от неживых тел. Из каких химических элементов состоят организмы?

Рис. 236. Франческо Реди (1626-1698) и его опыт

Вопрос о возникновение биосферы неразрывно связан с другим вопросом - как появилась на Земле жизнь? Этот вопрос - самый сложный в науке. Жизнь - явление планетарное, поэтому поиском ответа на него заняты ученые разных специальностей - биологи, физики, химики, философы. Существует несколько теорий возникновения жизни на Земле, а следовательно и биосферы. Рассмотрим некоторые из них.

Теории возникновения жизни на Земле. Согласно упомянутой выше теории креационизма, жизнь на Земле была сотворена Богом как единожды свершившийся акт (рис. 235). Убеждения сторонников этой теории основываются на вере. Креационизм не выдвигает никаких научных доказательств и ничего общего с наукой не имеет.

Теория самопроизвольного зарождения жизни утверждает, что живое способно зарождаться из неживого при определенных условиях. Опровержения этому были получены в опытах итальянского врача Франческо Реди (рис. 236).

В 1668 г. он поставил опыт, взяв несколько банок с широким горлом, в которые поместил мертвых змей. Часть банок он накрыл плотной материей, другие оставил открытыми. Вскоре налетели мухи и отложили яйца на мертвых змей в открытых банках, из которых потом вышли личинки. В накрытых материей банках личинок не оказалось, так как мухи не могли в них проникнуть и отложить яйца (рис. 236). Следовательно, сделал вывод Ф. Реди, личинки появились из яиц, отложенных мухами, а не самопроизвольно зародились из мертвых змей, как было принято считать в то время.

Рис. 235. Микеланджело Буонарротн. Сотворение мира. Бог создает планеты. Фрагмент росписи Сикстинской капеллы в Ватикане

Согласно теории панспермии (от греч. пан - всё и сперма - семена) жизнь на Земле имеет внеземное, т. е. космическое происхождение. Активными сторонниками и разработчиками этой теории возникновения жизни были шведский химик Сванте Август Аррениус (рис. 237) и В.И. Вернадский.

Рис. 237. Сванте Август Аррениус (1859-1927)

Зародыши простых организмов, например бактерий, так называемые «семена жизни», согласно теории панспермии, попадают на Землю вместе с метеоритами и космической пылью (рис. 238). И затем они дают начало жизни. Это предположение основывается на устойчивости спор некоторых бактерий к солнечной радиации, космическому вакууму и низким температурам. Основываясь на теории панспермии, можно допустить существование организмов и на других планетах, обладающими подходящими для этого условиями.

Рис. 238. 1 - метеорит с Марса; 2 - похожие на бактерии органические формы, обнаруженные в трещинах метеорита

Теория биопоэза (от греч. биос - жизнь и поезис - становление) рассматривает возникновения живого на Земле как результат химической эволюции неорганических соединений углерода. Эта теория является общепринятой в современной науке. Согласно ей, возникновение жизни на любой планете неизбежно, если создаются и существуют достаточно длительное время два необходимых для этого условия - определенные неорганические соединения и источники энергии. В возникновении жизни эта теория выделяет три этапа: 1) синтез органических соединений из неорганических; 2) образование из органических мономеров биологических полимеров; 3) формирование из биологических полимеров мембранных структур и первых клеток.

Химическая эволюция и появление пробионтов. Земля и другие планеты Солнечной системы образовались около 5 млрд лет назад из газопылевого облака, состоявшего из атомов водорода, гелия, углерода, кислорода, азота и фосфора (рис. 239). При вращении облако уплощалось и разогревалось, в результате чего сформировались Солнце и планеты. Последующее охлаждение Солнца и планет привело к формированию их структур. Так, у Земли образовались кора, мантия, ядро и первичная атмосфера, состоявшая из метана, аммиака, углекислого газа, угарного газа, водорода и паров воды. Кислорода в первичной атмосфере Земли не было. Благодаря конденсации паров воды сформировался первичный океан.

Рис. 239. Газопылевое облако первичного космического вещества

Вследствие электрической энергии в бескислородных условиях на Земле затем мог начаться синтез органических соединений - белков из неорганических. Эту гипотезу выдвинул в 1924 г. русский ученый Александр Иванович Опарин (рис. 240). Его предположение впоследствии получило экспериментальное подтверждение.

Рис. 240. Александр Иванович Опарин (1894 - 1980)

В 1953 г. американские ученые Стенли Миллер и Гарольд Юри сконструировали установку, в которой были воспроизведены условия древней Земли, ее первичные атмосфера и океан (рис. 241). В реакционной колбе через смесь газов (метана, аммиака, водорода) и паров воды при температуре 80°С пропускали электрический разряд мощностью в 60000 вольт, эквивалентный количеству энергии, полученной Землей за 50 млн лет. Через неделю в конденсате, образовавшемся при охлаждении, были обнаружены простые органические соединения - молочная кислота, мочевина и аминокислоты.

Рис. 241. Установка для абиогенного синтеза органических веществ С. Миллера и Г. Юри

Итак, первым шагом на пути химической эволюции мог стать абиогенный (вне живых систем) синтез простых органических веществ из неорганических в бескислородных условиях древней Земли.

Рис. 242. Коацерватные капли белковой природы

Второй шаг на пути химической эволюции - формирование из простых органических соединений более сложных. Так, из мономеров, например аминокислот, должны были образоваться полимеры - белки (рис. 242). О механизмах подобного рода процессов ученые до сих пор спорят и не могут прийти к единому мнению. По мнению Опарина, этот процесс мог происходить путем коацервации (от лат. коацерватус - накопленный, собранный) - самопроизвольного разделения водного раствора аминокислот на обособленные от воды белковые капли (рис. 243).

Рис. 243. Коацервация

Третьим, завершающим шагом на пути химической эволюции было формирование из биологических полимеров мембранных структур и первых клеток. Толчком к этому могло послужить волнение пленки, состоящей из молекул абиогенно синтезированных белков и липи-дов, вызванное ветром. Пленка прогибалась и образовывала мембранные пузырьки. Пузырьки выдувались ветром и падая обратно на поверхность пленки, покрывались второй мембраной (рис. 244). Так, по всей видимости, могли сформироваться мембранные структуры, сходные с плазматической мембраной клетки.

Рис. 244. Образование мембранных структур из биологических полимеров

В течение миллионов лет мембраны совершенствовались, что привело к возникновению пробионтов (от лат. про - впереди и греч. биос - жизнь). Их, по мнению Опарина, можно считать предшественниками настоящих клеток, так как в них еще не происходили сложные процессы обмена веществ и точная передача генетической информации. Переход около 3,8-3,5 млрд лет назад от пробионтов к настоящим клеткам, обладавших этими важнейшими признаками живого, означал появление жизни и начало биологической эволюции.

Начало эволюции биосферы. Все существующие в настоящее время на Земле организмы неразрывно связаны друг с другом и с окружающей их неживой природой тесными взаимосвязями. Представить появление в прошлом на нашей планете каких-либо изолированных от окружающей среды одиночных первых организмов просто невозможно. По всей видимости, жизнь на Земле сразу возникла в форме какого-то первичного биоценоза, уже включенного в биогеохимический круговорот. Этот биоценоз объединял какие-то примитивные одноклеточные организмы, различавшихся по способам питания. Среди них обязательно должны были быть и автотрофные и гетеротрофные организмы - производители, потребители и разрушители органических веществ. Первичный биоценоз был связан с неживой природой древней Земли в единый биогеоценоз. Дальнейшая эволюция биосферы шла в направлении выделения из этого первичного биоценоза отдельных организмов, которые затем объединялись уже в другие сообщества.

Таким образом, только уже включенные в биогеохимический круговорот и поток энергии в биосфере организмы могли устойчиво существовать и эволюционировать на нашей планете.

Упражнения по пройденному материалу

  1. Как объясняют возникновение жизни на нашей планете различные теории? Сравните их между собой. Каковы слабые и сильные стороны различных теории возникновения жизни на Земле.
  2. Перечислите основные этапы химической эволюции.
  3. Какие условия и химические соединения были необходимы для абиогенного синтеза на древней Земле органических соединений из неорганических?
  4. С какого момента на нашей планете началась биологическая эволюция?
  5. Объясните, почему ученые считают, что жизнь на Земле возникла сразу в форме первичного биоценоза.

Сегодня известно, что всœе живые существа, во-первых, обладают совокупностью одних и тех же свойств и состоят из одних и тех же групп биологических полимеров, выполняющих определœенные функции; во-вторых , последовательность биохимических превращений, обеспечивающих обменные процессы, у них сходна вплоть до деталей. К примеру, расщепление глюкозы, биосинтез белка и другие реакции у самых разных организмов протекают почти одинаково. Следовательно, вопрос о происхождении жизни сводится к тому, как и в каких условиях возникла столь универсальная система биохимических превращений.

Несмотря на общность происхождения планет Солнечной системы, только на Земле появилась жизнь и достигла исключительного многообразия. Связано это с тем, что для возникновения жизни необходимы некоторые космические и планетарные условия. Во-первых , масса планеты не должна быть чересчур большой, так как энергия атомного распада природных радиоактивных веществ может привести к перегреванию планеты или радиоактивному загрязнению среды, не совместимому с жизнью; а чересчур маленькие планеты не могут удержать около себя атмосферу, потому что сила притяжения их невелика. Во-вторых , планета должна вращаться вокруг звезды по круговой или близкой к круговой орбите, что позволяет постоянно и равномерно получать от нее крайне важно е количество энергии. В-третьих , интенсивность излучения светила должна быть постоянной; неравномерность потока энергии будет препятствовать возникновению и развитию жизни, поскольку существование живых организмов возможно в узких температурных пределах. Всем этим условиям удовлетворяет Земля, на которой около 4,6 млрд лет назад начали создаваться условия для возникновения жизни.

На начальных этапах своей истории Земля представляла собой раскаленную планету. Вследствие вращения при постепенном снижении температуры атомы тяжелых элементов перемещались к центру, а в поверхностных слоях концентрировались атомы легких элементов (водорода, углерода, кислорода, азота), из которых и состоят тела живых организмов. Металлы и другие способные окисляться элементы соединялись с кислородом, и в атмосфере Земли не было свободного кислорода. Атмосфера состояла из свободного водорода и его соединœений, т. е. носила восстановительный характер . По мнению А.И. Опарина, это служило важной предпосылкой для возникновения органических молекул небиологическим путем. В 1953 ᴦ. Л.С. Миллер экспериментально доказал возможность абиогенного синтеза органических соединœений из неорганических. Пропуская электрический заряд через смесь Н2 , Н2О, СН4 и NH3, он получил набор нескольких аминокислот и органические кислоты. Позднее было установлено, что аналогичным путем в отсутствие кислорода бывают синтезированы очень многие органические соединœения, входящие в состав биологических полимеров (белков, нуклеиновых кислот и полисахаридов).

Возможность абиогенного синтеза органических соединœений подтверждается тем, что в космическом пространстве обнаружены цианистый водород, формальдегид, муравьиная кислота͵ метиловый и этиловый спирты и др.
Размещено на реф.рф
В некоторых метеоритах обнаружены жирные кислоты, сахара, аминокислоты. Все это свидетельствует о том, что достаточно сложные органические соединœения могли возникать в условиях, существовавших на Земле 4,0-4,5 млрд лет назад.

Более 4 млрд лет назад извергалось множество вулканов с выбросом огромного количества раскаленной лавы, выделялись большие объёмы пара, сверкали молнии. По мере остывания планеты водяные пары, находившиеся в атмосфере, конденсировались и обрушивались на Землю ливнями, образуя огромные водные пространства. Поскольку поверхность Земли в то время была горячей, вода испарялась, а затем, охлаждаясь в верхних слоях атмосферы, вновь выпадала на поверхность планеты, Это продолжалось в течение многих миллионов лет. В водах первичного океана были растворены компоненты атмосферы, различные соли. Вместе с тем, туда попадали и непрерывно образующиеся в атмосфере под действием жесткого ультрафиолетового излучения Солнца, высокой температуры в областях грозовых разрядов и активной вулканической деятельности органические соединœения – сахарá, аминокислоты, азотистые основания, органические кислоты и др.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, условиями для абиогенного возникновения органический соединœений были : восстановительный характер атмосферы Земли (соединœения, обладающие восстановительными свойствами, легко вступают во взаимодействия между собой и веществами-окислителями), высокая температура, грозовые разряды и мощное ультрафиолетовое излучение Солнца, ĸᴏᴛᴏᴩᴏᴇ тогда еще не задерживалось озоновым экраном.

Первичный океан, по-видимому, содержал в растворенном виде различные органические и неорганические молекулы, попавшие в него из атмосферы и вымывавшиеся из поверхностных слоев Земли. Концентрация органических соединœений постоянно увеличивалась, и в конце концов вόды океана стали ʼʼбульоном ʼʼ из белковоподобных веществ – пептидов, а также нуклеиновых кислот и других органических соединœений.

Органические молекулы имеют большую молекулярную массу и сложную пространственную конфигурацию. Οʜᴎ окружены водной оболочкой и объединяются, образуя высокомолекулярные комплексы - коацерваты, или коацерватные капли (как их называл А.И. Опарин). Коацерваты обладали способностью поглощать различные вещества, растворенные в водах первичного океана. В результате этого внутреннее строение коацервата изменялось, что вело или к его распаду, или к накоплению веществ, т. е. к росту и изменению химического состава, повышающему устойчивость коацерватной капли в постоянно меняющихся условиях.

В массе коацерватных капель происходил отбор наиболее устойчивых в данных конкретных условиях. Достигнув определœенных размеров, материнская коацерватная капля могла распадаться на дочерние, но продолжали существовать только те дочерние коацерватные капли , которые, вступая в элементарные формы обмена со средой , сохраняли относительное постоянство своего состава . В дальнейшем они приобрели способность поглощать из окружающей среды не всякие вещества , а лишь те, которые обеспечивали их устойчивость, а также выделять наружу продукты обмена . Параллельно увеличивались различия между химическим составом капли и окружающей среды. В процессе длительного отбора (химической эволюции) сохранились лишь те коацерваты , которые при распаде на дочерние не утрачивали особенностей структуры , т. е. приобретали свойства самовоспроизведения .

В ходе эволюции у важнейших составных частей коацерватных капель – полипептидов выработалась способность к каталитической активности, т. е. к значительному ускорению биохимических реакций , приводящих к превращению органических соединœений, а полинуклеотиды оказались способными связываться друг с другом по принципу дополнения и, следовательно, осуществлять неферментативный синтез дочерних полинуклеотидных цепей .

Следующий важный щаг предбиологической эволюции – объединœение способности полинуклеотидов к самовоспроизведению с возможностью полипептидов ускорять течение химических реакций, так как удвоение молекул ДНК эффективнее осуществляется при участии белков, обладающих каталитической активностью. Связь нуклеиновых кислот и белковых молекул в конце концов привела к возникновению генетического кода , т. е. такой организации молекул ДНК, в которой последовательность нуклеотидов стала служить информацией для построения конкретной последовательности аминокислот в белках.

Дальнейшая прогрессивная эволюция предбиологических структур привела к образованию слоев липидов (липидных границ), между коацерватами , богатыми органическими соединœениями, и окружающей водной средой. В процессе последующей эволюции липиды преобразовались в наружную мембрану , значительно повысившую жизнеспособность и устойчивость организмов. Появление мембраны предопределило направление дальнейшей химической эволюции по пути развития всœе более совершенных саморегулирующихся систем вплоть до возникновения первых клеток .

Таким образом, возникновение в физико-химической системе (коацервате ) метаболизма (обмена веществ) и точного самовоспроизведения - ϶ᴛᴏ главная предпосылка возникновения биологической системы – примитивной гетеротрофной анаэробной праклетки.

Биогеохимические функции жизни в силу своего разнообразия и сложности не могли быть связаны только с какой-то одной формой жизни. Первичная биосфера изначальна была представлена богатым функциональным разнообразием. Первичные биоценозы состояли из простейших одноклеточных организмов, так как всœе без исключения функции живого вещества в биосфере бывают выполнены ими.

Первичные организмы , возникшие на Земле около 3,8 млрд лет назад, обладали следующими свойствами :

‣‣‣ были гетеротрофными организмами , т. е. питались готовыми органическими соединœениями, накопленными на этапе космической эволюции Земли;

‣‣‣ были прокариотами – организмами, лишенными оформленного ядра;

‣‣‣ были анаэробными организмами , использующими в качестве источника энергии дрожжевое брожение;

‣‣‣ появились в виде первичной биосферы , состоящей из биоценозов, включающих различные виды одноклеточных организмов;

‣‣‣ появились и долгое время существовали только в водах первичного океана .

Появление примитивной клетки означало окончание предбиологической эволюции живого и начало биологической эволюции жизни . Считается, что отбор коацерватов и пограничный этап химической и биологической эволюции продолжались около 750 млн лет. В конце этого периода (на уровне около 3,8 млрд лет назад) появились первые примитивные безъядерные клетки прокариоты (преимущественно бактериального уровня). Первые живые организмы – гетеротрофы – использовали в качестве источника энергии (пищи) органические соединœения, растворенные в водах первичного океана. Поскольку в атмосфере Земли не было свободного кислорода, гетеротрофы имели анаэробный (бескислородный) тип обмена веществ, эффективность которого невысока. Увеличение количества гетеротрофов привело к истощению вод первичного океана, где оставалось всœе меньше готовых органических веществ, которые можно было использовать для питания.

В более выгодном положении оказались организмы, которые развили способность использовать энергию солнечного излучения для синтеза органического вещества из неорганических – фотосинтеза . Переход живого к фотосинтезу и автотрофному типу питания явился поворотом в эволюции живого. Атмосфера Земли стала ʼʼнаполнятьсяʼʼ кислородом, который для анаэробов явился ядом. По этой причине многие одноклеточные анаэробы погибли, но некоторые приспособились к кислороду. Первыми фотосинтезирующими организмами , выделяющими в атмосферу кислород, были цианобактерии (цианеи). Переход к фотосинтезу был длительным процессом и завершился около 1,8 млрд лет назад. С возникновением фотосинтеза в органическом веществе Земли накапливалось всœе больше энергии солнечного света͵ что ускоряло биологический круговорот веществ и эволюцию живого в целом.

В кислородной среде сформировались эукариоты , т. е. одноклеточные, имеющие ядро организмы. Это были уже более совершенные организмы с фотосинтетической способностью. Их ДНК уже были сконцентрированы в хромосомы , тогда как у прокариотных клеток наследственное вещество было распределœено по всœей клетке. Хромосомы эукариотов были сконцентрированы в ядре клетки , а сама клетка уже воспроизводилась без существенных изменений. Многие современные ученые приняли гипотезу о возникновении эукариотических клеток через ряд последовательных симбиозов, поскольку она хорошо обоснованна. В первую очередь, одноклеточные водоросли и сейчас легко вступают в союз с животными – эукариотами (к примеру, в телœе инфузории туфельки обитает водоросль хлорелла). Во-вторых, некоторые органоиды клетки – митохондрии и пластиды – по строению ДНК очень похожи на прокариотические клетки-бактерии и цианобактерии.

Последующая эволюция эукариотов была связана с разделœением на растительные и животные клетки. Такое разделœение произошло в протерозое, когда Земля была заселœена одноклеточными организмами.

Растительные клетки эволюционировали в сторону уменьшения способности передвижения из-за развития жесткой целлюлозной оболочки, но в направлении использования фотосинтеза.

Животные клетки эволюционировали в сторону увеличения способности к передвижению, а также совершенствования способов поглощать и выделять продукты переработки пищи.

Следующим этапом развития живого стало половое размножение. Оно возникло примерно 900 млн лет назад.

Дальнейший шаг в эволюции живого произошел около 700-800 млн лет назад, когда появились многоклеточные организмы с дифференцированным телом, тканями и органами, выполняющими определœенные функции. Это были губки, кишечнополостные, членистоногие и т. д., относящиеся к многоклеточным животным.

На протяжении всœего протерозоя и в начале палеозоя растения населяли в основном моря и океаны. Это были преимущественно зелœеные и красные водоросли.

Кембрийский период ознаменовался массовым появлением животных с минœеральными скелœетами (известковыми, фосфатными, кремневыми). Среди морских животных той поры известны ракообразные, губки, кораллы, моллюски, трилобиты и т. д. Наземная биота в кембрии была представлена моховидными, лишайниками и первыми многоклеточными животными, такими, как черви и членистоногие (многоножки). В морях обильно развивались цианобионты.

В конце ордовика стали появляться крупные плотоядные, а также рыбоподобные бесчелюстные позвоночные животные.

Самое примечательное событие силура связано с сушей. Впервые появились настоящие высшие растения (куксонии и др.), имевшие травянистый облик. Οʜᴎ были тесно связаны с влагоемкими пространствами побережий. Среди животных организмов – членистоногих тоже появились достоверные наземные представители – хелицеровые.

В девоне для наземных пространств характерно первое массовое развитие высших растений (риниофитов, псилофитов, плауновидных и папоротников). Дальнейшая эволюция позвоночных шла в направлении челюстных рыбообразных. В девоне позвоночные представлены тремя группами настоящих рыб : двоякодышащими, лучеперыми и кистеперыми рыбами. Приспособиться к жизни на суше смогли только кистеперые рыбы благодаря мускулистым конечностям и легким. В конце девона кистеперые рыбы дали начало первым наземным земноводным (позвоночным животным). В конце девона появились насекомые (кормовая база для будущих наземных позвоночных).

Переход к жизни в воздушной среде требовал от живых организмов очень многих изменений и предполагал выработку соответствующих приспособлений. Он резко увеличил темпы эволюции живого на Земле.

Так, карбон , или каменноугольный период, был временем интенсивного формообразования и диверсификации для высших растений, наземных беспозвоночных и позвоночных. Для высших растений карбон - ϶ᴛᴏ время расцвета плауновидных, членистостебельных (или хвощовых), папоротников и первых голосœеменных, древесные формы которых достигали в высоту 20-40 м (к примеру, Lepidodendron ). С расцветом растительности и появлением разнообразных экологических ниш тесно связано освоение наземных условий моллюсками, паукообразными и насекомыми. В карбоне беспозвоночные впервые освоили воздушное пространство. Особенно поражали тогда гигантские стрекозоподобные с размахом крыльев до 2 м и таракановые длиной до 3 см. А морфофизиологическое и экологическое разнообразие земноводных привело к появлению в среднем-позднем карбоне рептилий. Οʜᴎ были первыми приспособившимися к условиям жизни на суше позвоночными пресмыкающимися. Их яйца были покрыты твердой скорлупой, не боялись высыхания, были снабжены пищей и кислородом для эмбриона.

Пермский период развития органического мира характеризуется прежде всœего катастрофическим вымиранием морской биоты (с 400 семейств в начале до 200 – в конце). Это было связано с глобальной аридизацией климата͵ интенсивным горообразованием и связанным с ним оледенением.

Особенностью триасового периода является переходный характер систематического состава биоты. Появились, к примеру, новые группы водных рептилий – рыбовидные ихтиозавры, плезиозавры с длинной змеевидной шеей, маленькой головой, туловищем с ластами и укороченным хвостом. Увеличилось разнообразие наземных пресмыкающихся. Возникли динозавры, птерозавры. Продолжали существовать многочисленные зверообразные пресмыкающиеся, давшие в позднем триасепервых млекопитающих небольших размеров (яйцекладущие), внешне напоминающих крыс. В позднем триасе возникли и птицы . С появлением птиц и млекопитающих животные обрели теплокровность , хотя ею, вероятно, обладали и некоторые рептилии.

В составе наземной растительности преобладали голосœеменные (беннеттитовые, цикадовые, хвойные и др.), а папоротники представлены новыми группами, которые достигли своего пика в юре.

В юрское время в морской и наземной среде стремительно нарастает биоразнообразие. В юре наблюдался расцветпресмыкающихся . Οʜᴎ были представлены всœеми экологическими группами. Продолжали существовать водные представители (ихтиозавры, плезиозавры). На суше обитали ящеротазовые и птицетазовые динозавры. В юре обновился состав летающих ящеров. Птицы были представлены ящерохвостыми – археоптерикс. Появился новый подкласс млекопитающих сумчатые . Среди беспозвоночных наблюдался расцвет наземных насекомых .

Наземная растительность характеризовалась расцветом папоротников (древовидные формы и лианы) и голосœеменных (цикадовых и беннеттитовых), которые образовывали леса тропиков и субтропиков.

Основное биотическое событие мелового периода появление и интенсивное развитие покрытосœеменных (цветковых) растений .

В меловом периоде продолжается специализация пресмыкающихся (рептилий), они достигают громадных размеров; так масса некоторых динозавров превышает 50 т. Начинается параллельная эволюция цветковых растений и насекомых-опылителœей. В мелу появились первыеплацентарные млекопитающие (насекомоядные, древние копытные, первые приматы, а также, возможно, кошкоподобные хищные).

В конце мелового периода (67 млн лет назад) произошло массовое вымирание многих групп животных и растений. Этот глобальный экологический кризис имел меньший масштаб, чем пермо-триасовый. При этом, в результате этого похолодания сократился ареал околоводной растительности; вымерли растительноядные, за ними хищные динозавры (крупные рептилии сохранились лишь в тропическом поясе); в морях вымерли многие формы беспозвоночных и морские ящеры; преимущество в естественном отборе получили теплокровные животные - птицы и млекопитающие.

Кайнозойская эра - ϶ᴛᴏ время господства цветковых растений, насекомых, птиц и млекопитающих. Живорождение млекопитающих и вскармливание детенышей молоком явилось мощным фактором их эволюции, позволяющим размножаться в разнообразных условиях среды. Развитая нервная система способствовала разнообразию форм приспособления и защиты организмов.

Палеоген (особенно эоцен ) – время широкого широкого глобального распространения следующих млекопитающих: яйцекладущих, сумчатых, но определяющим было многообразие плацентарных (древних хищников, древних копытных, примитивных примат и др.). На суше также обитали чешуйчатые рептилии, черепахи, а в пресных водоемах – крокодилы. Достаточно разнообразны новые беззубые птицы. Среди водных позвоночных преобладали костистые рыбы. Разнообразны морские беспозвоночные.

В неогене постепенно приобретают современный вид земноводные и рептилии. Обращают на себя внимание крупные страусоподобные птицы. Продолжался расцвет плацентарных млекопитающих: непарнопалых (гиппарионы) и парнопалых (олени, верблюды, свинообразные), новых хищников (саблезубые тигры), хоботных (мастодонты). К концу неогена встречаются уже всœе современные семейства млекопитающих.

Решающим этапом в эволюции жизни на Земле стало развитие отряда приматов. В кайнозое примерно 67-27 млн лет назад приматы разделились на низших и человекообразных обезьян, являющихся древнейшими предками современного человека.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, в палеонтологической летописи к впечатляющим массовым появлениям жизни можно отнести много событий. Из них укажем следующие, отметив начало появления (cм. МГШ):

● 3,8–3,5 млрд лет (AR1 – эоархей). Возникновение жизни. Появление бактерий и цианобионтов. Литосфера начинает обогащаться породами биогенного происхождения (графиты, шунгиты).

● 3,2 млрд лет (AR2/AR3 – палеоархей/мезоархей). Массовое развитие цианобионтов. Литосфера приобретает биогенные карбонатные толщи, названные строматолитовыми. Атмосфера начинает обогащаться молекулярным кислородом, выделяемым цианобионтами при фотосинтезе.

● 1,6 млрд лет (PR1/PR2 – палеопротерозой/мезопротерозой). Появление аэробных бактерий, низших водорослей, животных и грибов.

● 1,0–0,7 млрд лет (PR3 – неопротерозой). Появление достоверных многоклеточных водорослей и бесскелœетных беспозвоночных, представленных книдариями, червями, членистоногими, (?) иглокожими и другими группами.

● 542,0 ±1,0–521 (530) млн лет (ранний кембрий). Массовое появление минœеральных скелœетов в царстве Животных почти у всœех известных типов.

● 416,0±2,8 млн лет (S2/D1 – поздний силур/ранний девон). Массовое появление наземной растительности.

● 359,2±2,5 млн лет (D/C – поздний девон/ранний карбон). Массовое появление первых наземных беспозвоночных (насекомые, паукообразные) и позвоночных (земноводные, рептилии).

● 65,5±0,3 млн лет (MZ/KZ – рубеж мезозоя и кайнозоя). Массовое появление покрытосœеменных растений и млекопитающих.

● 2,8 млн лет (N2 – плиоцен, пьяченца). Появление человека.

Сегодня описано более 1 млн видов животных , около 0,5 млн видов растений , сотни тысяч видов грибов, более 3 тыс. видов бактерий. Подсчитано, что не менее 1 млн видов пока остаются неописанными. Современная биология выделяет пять царств : Бактерии, Цианобионты, Растения, Грибы, Животные.

Проблема начала и эволюция жизни на Земле. - понятие и виды. Классификация и особенности категории "Проблема начала и эволюция жизни на Земле." 2017, 2018.