Где происходит биосинтез белков. Биосинтез белка (реализация наследственной информации). Какие функции выполняют в клетке белки

Биосинтез белка происходит во всех органах, тканях и клетках. Наибольшее количество белка синтезируется в печени. Рибосомы осуществляют биосинтез белка. По химической природе рибосомы - нуклеопротеиды, состоящие из РНК (50-65%) и белков (35-50%). являются составными частями гранулярной где происходят биосинтез и перемещение синтезированных молекул белка.

Рибосомы в клетке находятся в виде скоплений от 3 до 100 единиц - полисом (полирибосом). Рибосомы обычно соединены между собой своеобразной нитью, видимой под электронным микроскопом - и-РНК.

Каждая рибосома способна синтезировать самостоятельно одину полипептидную цепь, группа - несколько таких цепей и молекул белка.

Этапы биосинтеза белка

Активация аминокислот. В гиалоплазму из межклеточной жидкости в результате диффузии, осмоса или активного переноса поступают аминокислоты. Каждый вид амино- и иминокислот взаимодействует с индивидуальным ферментом - аминоацилсинтетазой. Реакция активируется катионами магния, марганца, кобальта. Возникает активированная аминокислота.

Биосинтез белка (второй этап) - взаимодействие и соединение активированной аминокислоты с т-РНК. Активированные аминокислоты (аминоациладенилат) при помощи ферментов переносятся на т-РНК цитоплазмы. Процесс катализируется аминоацил-РНК-синтетазами. Остаток аминокислоты соединяется карбоксильной группой с гидроксильной второго атома Карбона рибозы нуклеотида т-РНК.

Биосинтез белка (третья стадия) - транспортировка комплекса активированной аминокислоты с т-РНК в рибосомы клетки. Аминокислота связана с т-РНК, переносится с гиалоплазмы на рибосому. Процесс катализируется специфическими ферментами, которых в организме не менее 20. Некоторые аминокислоты транспортируются несколькими т-РНК (например, валин и лейцин - тремя т-РНК). В этом процессе используется энергия ГТФ и АТФ. Четвертая стадия биосинтеза характеризируется связыванием аминоацил-т-РНК с комплексом и-РНК - рибосома. Аминоацил-т-РНК, подойдя к рибосоме, взаимодействует с и-РНК. Каждая т-РНК имеет участок, состоящий из трех нуклеотидов - антикодон. В и-РНК ему соответствует участок с тремя нуклеотидами - кодон. Каждому кодону соответствуют антикодон т-РНК и одна аминокислота. В ходе биосинтеза к рибосомам присоединяются в виде аминоацил-тРНК аминокислоты, которые в дальнейшем в порядке, определяемом размещением кодонов в и-РНК, формируются в полипептидную цепь.

Следующая стадия биосинтеза белка - это инициация полипептидной цепи. После того как две соседние аминоацил-т-РНК своими антикодонами присоединились к кодонам и-РНК, создаются условия для синтеза полипептидной цепи. Формируется пептидная связь. Эти процессы катализируются пептидсинтетазами, активируются катионами Mg и факторами инициации белковой природы F1, F2, F3. Источником химической энергии является гуанозинтрифосфатная кислота.

Терминация полипептидной цепи. Рибосома, на поверхности которой синтезировалась полипептидная цепь, достигает конца цепи и-РНК, в дальнейшем «соскакивает» из нее. К противоположному концу и-РНК на ее место присоединяется новая рибосома, которая осуществляет синтез очередной молекулы полипептида. Полипептидная цепь отсоединяется от рибосомы и выделяется в гиалоплазму. Эта реакция осуществляется с помощью специфического фактора освобождения (фактора R), который соединен с рибосомой и облегчает гидролиз эфирной связи между полипептидом и т-РНК.

В гиалоплазме из полипептидных цепей образуются простые и Формируются вторичная, третичная и во многих случаях - молекулы. Таким образом происходит биосинтез белка в клетке.

Каждая клетка содержит тысячи белков. Свойства белков определяются их первичной структурой , т.е. последовательностью аминокислот в их молекулах.

В свою очередь наследственная информация о первичной структуре белка заключена в последовательности нуклеотидов в молекуле ДНК. Эта информация получила название генетической , а участок ДНК, в котором содержится информация о первичной структуре одного белка, называется ген .

Ген - это участок ДНК, в котором содержится информация о первичной структуре одного белка.

Ген - это единица наследственной информации организма.

Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип .

Биосинтез белка

Биосинтез белка - это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах.

Процесс биосинтеза белка состоит из двух этапов: транскрипции и трансляции.

Каждый этап биосинтеза катализируется соответствующим ферментом и обеспечивается энергией АТФ.

Биосинтез происходит в клетках с огромной скоростью. В организме высших животных в одну минуту образуется до \(60\) тыс. пептидных связей.

Транскрипция

Транскрипция - это процесс снятия информации с молекулы ДНК синтезируемой на ней молекулой иРНК (мРНК).

Носителем генетической информации является ДНК, расположенная в клеточном ядре.

В ходе транскрипции участок двуцепочечной ДНК «разматывается», а затем на одной из цепочек синтезируется молекула иРНК.

Информационная (матричная) РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности.

Формируется цепочка иРНК, представляющая собой точную копию второй (нематричной) цепочки ДНК (только вместо тимина включен урацил). Так информация о последовательности аминокислот в белке переводится с «языка ДНК» на «язык РНК».

Как и в любой другой биохимической реакции в этом синтезе участвует фермент - РНК-полимераза .

Так как в одной молекуле ДНК может находиться множество генов, очень важно, чтобы РНК-полимераза начала синтез иРНК со строго определенного места ДНК. Поэтому в начале каждого гена находится особая специфическая последовательность нуклеотидов, называемая промотором . РНК-полимераза «узнаёт» промотор, взаимодействует с ним и, таким образом, начинает синтез цепочки иРНК с нужного места.

Фермент продолжает синтезировать иРНК до тех пор, пока не дойдет до очередного «знака препинания» в молекуле ДНК - терминатора (это последовательность нуклеотидов, указывающая на то, что синтез иРНК нужно прекратить).

У прокариот синтезированные молекулы иРНК сразу же могут взаимодействовать с рибосомами и участвовать в синтезе белков.

У эукариот иРНК синтезируется в ядре, поэтому сначала она взаимодействует со специальными ядерными белками и переносится через ядерную мембрану в цитоплазму.

Трансляция

Трансляция - это перевод последовательности нуклеотидов молекулы иРНК в последовательность аминокислот молекулы белка.

В цитоплазме клетки обязательно должен иметься полный набор аминокислот, необходимых для синтеза белков. Эти аминокислоты образуются в результате расщепления белков, получаемых организмом с пищей, а некоторые могут синтезироваться в самом организме.

Обрати внимание!

Аминокислоты доставляются к рибосомам транспортными РНК (тРНК ). Любая аминокислота может попасть в рибосому только прикрепившись к специальной тРНК).

На тот конец иРНК, с которого нужно начать синтез белка, нанизывается рибосома. Она движется вдоль иРНК прерывисто, «скачками», задерживаясь на каждом триплете приблизительно \(0,2\) секунды.

За это время молекула тРНК, антикодон которой комплементарен кодону, находящемуся в рибосоме, успевает распознать его. Аминокислота, которая была связана с этой тРНК, отделяется от «черешка» тРНК и присоединяется с образованием пептидной связи к растущей цепочке белка. В тот же самый момент к рибосоме подходит следующая тРНК (антикодон которой комплементарен следующему триплету в иРНК), и следующая аминокислота включается в растущую цепочку.

Аминокислоты, доставленные на рибосомы, ориентированы по отношению друг к другу так, что карбоксильная группа одной молекулы оказывается рядом с аминогруппой другой молекулы. В результате между ними образуется пептидная связь.

Рибосома постепенно сдвигается по иРНК, задерживаясь на следующих триплетах. Так постепенно формируется молекула полипептида (белка).

Синтез белка продолжается до тех пор, пока на рибосоме не окажется один из трёх стоп-кодонов (УАА, УАГ или УГА). После этого белковая цепочка отсоединяется от рибосомы, выходит в цитоплазму и формирует присущую этому белку вторичную, третичную и четвертичную структуры.

Так как клетке необходимо много молекул каждого белка, то как только рибосома, первой начавшая синтез белка на иРНК, продвинется вперед, за ней на ту же иРНК, нанизывается вторая рибосома. Затем на иРНК последовательно нанизываются следующие рибосомы.

Все рибосомы, синтезирующие один и тот же белок, закодированный в данной иРНК, образуют полисому . Именно на полисомах и происходит одновременный синтез нескольких одинаковых молекул белка.

Когда синтез данного белка окончен, рибосома может найти другую иРНК и начать синтезировать другой белок.

Общая схема синтеза белка представлена на рисунке.

Биосинтез белков идет в каждой живой клетке. Наиболее активен он в молодых растущих клетках, где синтезируются белки на построение их органоидов, а также в секреторных клетках, где синтезируются белки-ферменты и белки-гормоны.

Основная роль в определении структуры белков принадлежит ДНК. Отрезок ДНК, содержащий информацию о структуре одного белка, называют геном. Молекула ДНК содержит несколько сотен генов. В молекуле ДНК записан код о последовательности аминокислот в белке в виде определенно сочетающихся нуклеотидов. Код ДНК удалось расшифровать почти полностью. Сущность его состоит в следующем. Каждой аминокислоте соответствует участок цепи ДНК из трех рядом стоящих нуклеотидов.

Например, участок Т-Т-Т соответствует аминокислоте лизину, отрезок А-Ц-А - цистину, Ц-А-А - валину н т. д. Разных аминокислот - 20, число возможных сочетаний из 4 нуклеотидов по 3 равно 64. Следовательно, триплетов с избытком хватает для кодирования всех аминокислот.

Синтез белка - сложный многоступенчатый процесс, представляющий цепь синтетических реакций, протекающих по принципу матричного синтеза.

Поскольку ДНК находится в ядре клетки, а синтез белка происходит в цитоплазме, существует посредник, передающий информацию с ДНК на рибосомы. Таким посредником является и-РНК. :

В биосинтезе белка определяют следующие этапы, идущие в разных частях клетки:

1. Первый этап - синтез и-РНК происходит в ядре, в процессе которого информация, содержащаяся в гене ДНК, переписывается на и-РНК. Этот процесс называется транскрипцией (от лат. «транскриптик» - переписывание).

2. На втором этапе происходит соединение аминокислот с молекулами т-РНК, которые последовательно состоят из трех нуклеотидов - антикодонов, с помощью которых определяется свой триплет-кодон.

3. Третий этап - это процесс непосредственного синтеза полипептидных связей, называемый трансляцией. Он происходит в рибосомах.

4. На четвертом этапе происходит образование вторичной и третичной структуры белка, то есть формирование окончательной структуры белка.

Таким образом, в процессе биосинтеза белка образуются новые молекулы белка в соответствии с точной информацией, заложенной в ДНК. Этот процесс обеспечивает обновление белков, процессы обмена веществ, рост и развитие клеток, то есть все процессы жизнедеятельности клетки.

18.Энергетический обмен в клетках.

Для жизнедеятельности организма необходима энергия. Растения аккумулируют солнечную энергию в органических веществах при фотосинтезе. В процессе энергетического обмена органические вещества расщепляются и энергия химических связей освобождается. Частично она рассеивается в виде тепла, а частично запасается в молекулах АТФ. У животных энергетический обмен протекает в три этапа.

Первый этап - подготовительный. Пища поступает в организм животных и человека в виде сложных высокомолекулярных соединений. Прежде чем поступить в клетки и ткани, эти вещества должны разрушиться до низкомолекулярных, более доступных для клеточного усвоения веществ.

На первом этапе происходит гидролитическое расщепление органических веществ, идущее при участии воды. Оно протекает под действием ферментов в пищеварительном тракте многоклеточных животных, в пищеварительных вакуолях одноклеточных, а на клеточном уровне - в лизосомах.

Реакции подготовительного этапа:

белки + Н20 -> аминокислоты + Q;

жиры + Н20 -> глицерин + высшие жирные кислоты + Q;

полисахариды -> глюкоза + Q.

У млекопитающих и человека белки расщепляются до аминокислот в желудке и в двенадцатиперстной кишке под действием ферментов - пептидгидролаз (пепсина, трипсина, хемотрипсина). Расщепление полисахаридов начинается в ротовой полости под действием фермента птиалина, а далее продолжается в двенадцатиперстной кишке под действием амилазы. Там же расщепляются и жиры под действием липазы. Вся энергия, выделяющаяся при этом, рассеивается в виде тепла.

Образующиеся низкомолекулярные вещества поступают в кровь и доставляются ко всем органам и клеткам. В клетках они поступают в лизосому или непосредственно в цитоплазму. Если расщепление происходит на клеточном уровне в лизосомах, то вещество сразу же поступает в цитоплазму. На этом этапе происходит подготовка веществ к внутриклеточному расщеплению.

Второй этап - бескислородное окисление. Второй этап осуществляется на клеточном уровне при отсутствии кислорода. Он протекает в цитоплазме клетки. Рассмотрим расщепление глюкозы, как одного из ключевых веществ обмена в клетке. Все остальные органические вещества (жирные кислоты, глицерин, аминокислоты) на разных этапах втягиваются в процессы ее превращения.

Бескислородное расщепление глюкозы называется гликолизом. Глюкоза претерпевает ряд последовательных превращений (рис. 16). Вначале она преобразуется во фруктозу, фосфорилируется - активируется двумя молекулами АТФ и превращается во фруктозо-дифосфат. Далее молекула шестиатомного углевода распадается на два трехуглеродных соединения - две молекулы глицерофосфата (триозы). После ряда реакций они окисляются, теряя по два атома водорода, и превращаются в две молекулы пировиноградной кислоты (ПВК). В результате этих реакций синтезируются четыре молекулы АТФ. Так как первоначально на активацию глюкозы было затрачено две молекулы АТФ, то общий итог составляет 2АТФ. Таким образом, выделяющаяся при расщеплении глюкозы энергия частично запасается в двух молекулах АТФ, а частично расходуется в виде тепла. Четыре атома водорода, которые были сняты при окислении глицерофосфата, соединяются с переносчиком водорода НАД+ (никотинамид-динуклеотидфосфат). Это такой же переносчик водорода, как и НАДФ+, но участвует в реакциях энергетического обмена.

Третий этап - биологическое окисление, или дыхание. Этот этап протекает только в присутствии кислорода и иначе называется кислородным. Он протекает в митохондриях.

Пировиноградная кислота из цитоплазмы поступает в митохондрии, где теряет молекулу углекислого газа и превращается в уксусную кислоту, соединяясь с активатором и переносчиком коэнзимом-А (рис. 17). Образующийся ацетил-КоА далее вступает в серию циклических реакций. Продукты бескислородного расщепления - молочная кислота, этиловый спирт - также далее претерпевают изменения и подвергаются окислению кислородом. В пировиноградную кислоту превращается молочная кислота, если она образовалась при недостатке кислорода в тканях животных. Этиловый спирт окисляется до уксусной кислоты и связывается с КоА.

Циклические реакции, в которых происходит преобразование уксусной кислоты, носят название цикла ди- и трикарбоновых кислот, или цикла Кребса, по имени ученого, впервые описавшего эти реакции. В результате ряда последовательных реакций происходит декарбоксилирование - отщепление углекислого газа и окисление - снятие водорода с образующихся веществ. Углекислый газ, образующийся при декарбоксилировании ПВК и в цикле Кребса, выделяется из митохондрий, а далее из клетки и организма в процессе дыхания. Таким образом, углекислый газ образуется непосредственно в процессе декарбоксилирования органических веществ. Весь водород, который снимается с промежуточных веществ, соединяется с переносчиком НАД+, и образуется НАД 2Н. При фотосинтезе углекислый газ соединяется с промежуточными веществами и восстанавливается водородом. Здесь идет обратный процесс.

Проследим теперь путь молекул НАД 2Н. Они поступают на кристы митохондрий, где расположена дыхательная цепь ферментов. На этой цепи происходит отщепление водорода от переносчика с одновременным снятием электронов. Каждая молекула восстановленного НАД 2Н отдает два водорода и два электрона. Энергия снятых электронов очень велика. Они поступают на дыхательную цепь ферментов, которая состоит из белков - цитохромов. Перемещаясь по этой системе каскадно, электрон теряет энергию. За счет этой энергии в присутствии фермента АТФ-азы синтезируются молекулы АТФ. Одновременно с этими процессами происходит перекачивание ионов водорода через мембрану на наружную ее сторону. В процессе окисления 12 молекул НАД-2Н, которые образовались при гликолизе (2 молекулы) и в результате реакций в цикле Кребса (10 молекул), синтезируются 36 молекул АТФ. Синтез молекул АТФ, сопряженный с процессом окисления водорода, называется окислительным фосфорилированием. Этот процесс был впервые описан русским ученым В. А. Энгельгардтом в 1931 г. Конечным акцептором электронов является молекула кислорода, поступающая в митохондрии при дыхании. Атомы кислорода на наружной стороне мембраны принимают электроны и заряжаются отрицательно. Положительные ионы водорода соединяются с отрицательно заряженным кислородом, и образуются молекулы воды. Вспомним, что кислород атмосферы образуется в результате фотосинтеза при фотолизе молекул воды, а водород идет на восстановление углекислого газа. В процессе энергетического обмена водород и кислород вновь соединяются и превращаются в воду.

Под этапами биосинтеза белка могут понимать как 1) совокупность процессов транскрипции, трансляции и посттрансляционные модификации , так и 2) только этапы трансляции , так как именно в процессе трансляции происходит непосредственный синтез молекулы полипептида (будущего белка или его составной части).

В первом случае рассматриваются три этапа:

  1. Транскрипция - синтез молекулы мРНК на участке ДНК
  2. Трансляция - синтез белка (полипептидной цепочки) на рибосомах .
  3. Приобретение белком своей функциональной третичной структуры (или четверичной).

Во втором случае, говоря об этапах биосинтеза белка, подробно рассматривают, как протекает трансляция, выделяя в ней ряд своих этапов. Остановимся на этом случае.

Трансляция - это процесс биосинтеза белка из аминокислот , который протекает на рибосомах при участии мРНК, тРНК, ферментов (факторов) и включает этапы активации аминокислот, инициацию трансляции, ее элонгацию и терминацию.

Активация аминокислот непосредственно не связана с биосинтезом белка. Аминокислоты плавают в цитоплазме, с помощью специальных ферментов специфичных для каждой кислоты переходят в активную форму и связываются со своими молекулами тРНК. В итоге образуются комплексы аминоацил-тРНК (аа-тРНК) – тРНК, несущие свои аминокислоты.

На этапе инициации трансляции происходит присоединение матричной РНК (мРНК) к малой субъединице рибосомы. Факторы инициации распознают начальный (5") конец мРНК по кэпу и специальным нуклеотидным последовательностям. При этом стартовый кодон (АУГ) оказывается в недостроенном P-участке рибосомы. После этого присоединяется большая субъединица рибосомы и активные участки достраиваются.

К кодону АУГ комплементарна тРНК с антикодоном УАЦ, которая переносит аминокислоту метионин. Именно эта тРНК и данная аминокислота (у эукариот) всегда начинают синтез полипептида.

На этапе элонгации происходит последовательное присоединение одной аминокислоты за другой, т. е. происходит биосинтез белка. После этапа инициации в P-участке рибосомы находится тРНК, связанная с метионином. В A-участок рибосомы заходит следующая тРНК. Ее антикодон комплементарен находящемуся здесь кодону мРНК (он следующий за стартовым), и несет эта тРНК соответствующую этому кодону аминокислоту.

Итак, в P-участке находится один комплекс аа-тРНК, в A-участке – другой. Рибосома располагает тРНК, их аминокислоты и факторы элонгации так, что между аминокислотами протекает химическая реакция, в результате которой образуется пептидная связь . Две аминокислоты оказываются связанными друг с другом.

Рибосома смещается по мРНК на один триплет вперед. При этом та тРНК, что была в P-участке покидает рибосому. Та тРНК, что была в A-участке, оказывается в P-участке. С этой тРНК остается соединенным синтезированный дипептид (состоит из двух аминокислот, первая из которых метионин). A-участок освобождается.

На следующем цикле элонгации в A-участок рибосомы заходит следующий комплекс аа-тРНК. (Антикодон этой тРНК комплементарен находящемуся здесь кодону мРНК. В зависимости от своего антикодона тРНК связывается только с определенной аминокислотой.)

Далее происходит реакция между дипептидом и третьей аминокислотой, образуется трипептид. Рибосома смещается, трипептид связанный с тРНК оказывается в P-участке. Рибосома готова для принятия четвертого комплекса аа-тРНК.

Этап элонгации биосинтеза белка (т. е. последовательное присоединение аминокислот к полипептидной цепочки) продолжается до тех пор, пока на мРНК не встретится один из трех стоп-кодонов. Это УАА, УАГ, УГА. Для них не существует своих тРНК, но зато есть специальные факторы терминации, при присоединении которых к рибосоме происходит высвобождение синтезированного полипептида, субъединицы рибосомы расходятся, мРНК также высвобождается. Все это происходит на этапе терминации .

Первый метионин, соответствующий стартовому кодону, вырезается из белка. Внутри полипептида могут находится метионины, их также кодировал кодон АУГ, но поскольку перед этими кодонами не было кэпа и определенных последовательностей нуклеотидов, они не воспринимались системой биосинтеза белка как стартовые.

Часто по одной мРНК «ползут» несколько рибосом (друг за другом), каждая из которых синтезирует свою полипептидную цепь (но идентичные по последовательности аминокислот в готовом продукте). Такую совокупность рибосом называют полирибосомой , или полисомой .

Итак, если под биосинтезом белка понимать только процесс трансляции, то он будет включать три основных этапа: инициацию, элонгацию и терминацию.

1. Генетический код

2. Этапы биосинтеза белка

3. Регуляция синтеза белка

Транскрипция трансляция

ДНК → РНК → Белки → Регуляция метаболизма

Транскрипция – это синтез молекулы РНК или это процесс переписывания нуклеотидов гена с ДНК в РНК, всегда происходит на стадии двунитевой молекулы ДНК, при этом матрицей служит одна нить, которая называется антикодирующей.

Основные характеристики процесса транскрипции

1. РНК – копия содержит в себе весь объем информации определенного участка ДНК.

2. РНК сохраняет способность к образованию водородных связей между комплементарными основаниями (так как урацил, присутствующий в РНК вместо тимина спаривается с аденином)

3. Транскрипция отличается от репликации, при этом РНК-копия, после завершения ее синтеза освобождается от ДНК-матрицы, после чего происходит восстановление исходной двойной спирали ДНК.

4. Синтезирующие молекулы РНК имеют одноцепочечную структуру, она короче ДНК и соответствует длине участка ДНК, который достаточен для кодирования одного или нескольких белков.

Особенности данного процесса

1. В клетках эукариот – прежде чем превратится в и-РНК и попасть в цитоплазму, РНК претерпевает химические изменения.

2. В цитоплазме на каждой и-РНК синтезируются тысячи копий. Скорость этого процесса очень высока.

Генетический код

Генетический код – это аминокислотная последовательность белков. Он был расшифрован в 1961 году учеными Миренберпом и Маттеи. Они установили:

Кодирование аминокислот осуществляется триплетами нуклеотидов (кодонами) Из 4-х азотистых оснований можно составить 64 различные комбинации, которых достаточно для кодирования 20 аминокислот.

Кодон – это последовательность трех нуклеотидов, в результате которой кодируется определенная аминокислота.

Необходимо помнить, что:

Точность синтеза полипептидной цепи достигается за счет комплементарного узнавания азотистых оснований двух компонентов:

    кодона информационной РНК антикодона транспортной РНК

Последовательность аминокислот в любом белке зависит от последовательности азотистых оснований в ДНК, содержащихся в той клетке, где синтезируется данный белок. Заложенная в ДНК информация считывается в процесс транскрипции матричной РНК (м-РНК) и переносится в белоксинтезирующую систему на рибосомы. Ученый Крик доказал триплетную теорию кодона, которая и объясняет способ перевода четырехбуквенного языка нуклеиновых кислот на 20-буквенный язык белковых молекул.

Кодон-антикодоновое взаимодействие – это способ узнавания триплетом (которым является м-РНК) комплементарного триплета (им является антикодон), входящего в состав соответствующей т-РНК.

Кодон и антикодон спариваются антипараллельным образом (теорий качаний Крика):

1. Два первых основания кодонов образуют прочные пары с соответствующими азотистыми основаниями антикодона.

2. Находящиеся в третьем положении азотистые основания кодонов образуют слабые водородные связи с антикодоном.

3. Вывод Крика: находящиеся в третьем положении основания большинства кодонов имеют некоторую степень свободы при образовании пары с соответствующими азотистым основанием антикодона – это и есть качающиеся основания.

4. Именно такое взаимодействие кодона с антикодоном обеспечивает включение аминокислоты в соответствующие участки полипептидной цепи синтезирующегося белка.

Этапы биосинтеза белка

1 этап – этап активации аминокислот

Компоненты:

1. 20 аминокислот

2. 20 ферментов аминоацил-т-РНК-синтетаз

3. 20 и более т-РНК, а также АТФ и ионы Мg²+

На этом этапее осуществляется АТФ-зависимые превращения аминокислот в аминоацил-т-РНК.

1 стадия – из аминокислоты и АТФ образуется аминоацил-аденилат – это активированное соединение (ангидрид), в котором карбоксильная группа аминокислоты соединена с фосфатной группой адениновой кислоты.

2 стадия – аминоацидная группа аминоацил-аденилата переносится на молекулу соответствующей т-РНК. В результате образуется аминоацил-т-РНК – это активированное соединение, участвующее в биосинтезе белка. Этот процесс активизируется аминоцаил-т-РНК-синтетазами.

Во всех случаях на 2-ой стадии активированная аминокислота присоединяется к остатку адениловой кислоты, или адениловому нуклеотиду в триплете ЦЦА (ССА) на третьем конце молекулы т-РНК (3’-Т-РНК).

Молекулы т-РНК переводят информацию, заключенную в и-РНК на язык белка.

Таким образом, генетический код расшифровывается с помощью двух адаптаров: это т-РНК и аминоцаил-т-РНК-синтетаза, в результате чего каждая аминокислота может занять место, определенное ей триплетной нуклеотидной последовательностью в и-РНК, т. е. своим кодоном.

Для дальнейшего синтеза необходимы рибосомы. Синтез белков, входящих в состав рибосомной структуры, происходит цитоплазме, самосборка – в ядрышке за счет взаимодействия молекул белков и рибосомной РНК при участии ионов Мg²+.

р-РНК выполняет роль каркасов для упорядоченного расположения рибосомных полипептидов.

Суб-частицы в рибосоме расположены несимметрично, имеют неправильную форму, и соединены друг с другом так, что между ними остается бороздка, через которую проходит молекула и-РНК в процесс синтеза полипептидной цепи, а также 2-ая бороздка, удерживающая растущую полипептидную цепь.

2 этап – Инициация полипептидной цепи

Компоненты:

1. и-РНК, гуанозинтрифосфат (ГТФ), ионы Мg²+

2. N-формилметионил-т-РНК

3. Инициирующий кодон в и-РНК

4. Рибосомные субчастицы (30S, 50S)

5. Факторы инициации (IF 1;2;3)

У E. coli и других прокариот N-концевой аминокислотой при сборке полипептидной цепи всегда является остаток N-формилметианила.

Стадии образования инициирующего комплекса

A) В результате взаимодействия 30S субъединицы (субчастицы) и фактора инициации образуется структура, в которой белок препятствует ее ассоциации с 50S субчастицей.

B) Присоединение к 30S субчастице и-РНК достигается с помощью инициирующего сигнала, представляющего собой богатую пуриновыми основаниями последовательность, центр которой находится на расстоянии 10 нуклеотидов от 5’-конца инициирующего кодона и-РНК.

C) Первый транслируемый кодон расположен на расстоянии 25 нуклеотидов от 5’ конца.

D) Инициирующий сигнал, представленный коротким участком и-РНК, в результате взаимодействия с комплементарной последовательностью нуклеотидов, расположенных с 3-го конца 30S субчастицы, способствует фиксированию и-РНК в нужном для инициации положении.

E) Это взаимодействие обеспечивает правильное положение инициирующего кодона на 30S субчастице.

A) К комплексу, состоящему из 30S субчастицы, фактора инициации и и-РНК, присоединяются ранее связавшиеся с N-формилметионилом т-РНК, второй фактор инициации и гуанозин-трифосфат (ГТФ).

B) Возникновение функционально активной 70S рибосомы а результате присоединения 50S-рибосомной субчастицы к ранее образовавшейся комплексной структуре.

3 стадия – приготовление инициирующего комплекса к продолжению процесса трансляции.

3 этап – Элонгация

На этой стадии происходит синтез полипептидной цепи.

Компоненты:

1. Инициирующий комплекс – 70S рибосома.

2. Набор аминоацил-т-РНК

3. Фактор элонгации, цианозинтрифосфат (ГТФ)

4. Пептидилтрансфераза, ионы Мg²+

Элонгация – это циклический процесс.

Стадии элонгации

1 стадия – образование аминоацил-т-РНК, которая является комплементарным кодон-антикодоновым взаимодействием, а также специфической связью между участками молекул т-РНК и р-РНК.

2 стадия - подготовка для вступления остатков аминокислот в реакцию образования пептидной связи.

3 стадия (транслокация) – это перемещение рибосомы вдоль и-РНК на один кодон. На образование однопептидной связи затрачивается энергия гидролиза 2-х молекул ГТФ.

A) Свободная т-РНК отделяется и уходит в цитоплазму.

B) В дальнейшем аминоацильный участок вновь подготовлен для связывания очередной аминоацил-т-РНК, антикодон который комплементарен следующему кодону и-РНК – начинается новый цикл элонгации.

4 этап – Терминация.

Компоненты:

АТФ Терминирующий кодон и-РНК Факторы освобождения полипептида

1) Рост полипептидной цепи продолжается, пока один из 3-х терминирующих кодонов (УАА, УГА, УАГ) не поступит в рибосому. В этом случае кодон-антикодо-нового взаимодействия не происходит.

2) К терминирующему кодону присоединяется ответственный за терминацию фактор, в результате прекращается дальнейший рост белковой цепи.

3) Синтезируемый белок, и-РНК и т-РНК определяются от рибосомы.

4) И0РНК распадается до свободных рибонуклеидов, а т-РНК и рибосомы, распавшись на две субъединицы, участвуют в новых циклах трансляции.

5 этап – Процессинг

Компоненты:

1. Специфические ферменты

2. Кофакторы

Образующиеся полипептидные цепи формируют более сложные белки или управляют процессами метаболизма в качестве ферментов.

На одной молекуле и-РНК работает несколько и более (до 100) рибосом. Они образуют полисому, и на каждой рибосоме строится своя полипептидная цепь (в биосинтезе гемоглобина участвуют полсомы из 5-6 рибосом).

Отличие биосинтеза белка

1. У прокариот – транскрипция и трансляция связаны между собой и синтез белка начинается сразу же на продолжающей синтезироваться молекуле и-РНК.

2. У эукариот – сначала на ДНК синтезируется и-РНК, затем она созревает и только зрелая участвует в трансляции.

Регуляция синтеза белка

В процессе эволюции был создан механизм регуляции действия генов. Геном каждой клетки приобрел характер комплекса, состоящего из:

    Структурных генов, которые кодируют синтез белковых молекул (т-РНК и и-РНК); и Генов-регуляторов, которые обеспечивают упорядоченность в действии структурных генов.

Регуляция экспрессии (выражения) генов осуществляется на нескольких уровнях:

Генный – обусловлен изменением количества и локализации генов, контролирующих тот или иной признак. Транскрипционный – отвечает за то, какие и когда включать гены для наработки и-РНК. Трансляционный – обеспечивает отбор и-РНК, транслирующихся на рибосомах. Функциональный – связан с регуляцией активности ферментов.