Усилитель на транзисторах: виды, схемы, простые и сложные. Расчет усилителя с общим эмиттером Расчет каскадов усилителя на биполярных транзисторах

Усилители низкой частоты (УНЧ) используют для преобразования слабых сигналов преимущественно звукового диапазона в более мощные сигналы, приемлемые для непосредственного восприятия через электродинамические или иные излучатели звука.

Заметим, что высокочастотные усилители до частот 10... 100 МГц строят по аналогичным схемам, все отличие чаще всего сводится к тому, что значения емкостей конденсаторов таких усилителей уменьшаются во столько раз, во сколько частота высокочастотного сигнала превосходит частоту низкочастотного.

Простой усилитель на одном транзисторе

Простейший УНЧ, выполненный по схеме с общим эмиттером, показан на рис. 1. В качестве нагрузки использован телефонный капсюль. Допустимое напряжение питания для этого усилителя 3...12 В.

Величину резистора смещения R1 (десятки кОм) желательно определить экспериментально, поскольку его оптимальная величина зависит от напряжения питания усилителя, сопротивления телефонного капсюля, коэффициента передачи конкретного экземпляра транзистора.

Рис. 1. Схема простого УНЧ на одном транзисторе + конденсатор и резистор.

Для выбора начального значения резистора R1 следует учесть, что его величина примерно в сто и более раз должна превышать сопротивление, включенное в цепь нагрузки. Для подбора резистора смещения рекомендуется последовательно включить постоянный резистор сопротивлением 20...30 кОм и переменный сопротивлением 100... 1000 кОм, после чего, подав на вход усилителя звуковой сигнал небольшой амплитуды, например, от магнитофона или плеера, вращением ручки переменного резистора добиться наилучшего качества сигнала при наибольшей его громкости.

Величина емкости переходного конденсатора С1 (рис. 1) может находиться в пределах от 1 до 100 мкФ: чем больше величина этой емкости, тем более низкие частоты может усиливать УНЧ. Для освоения техники усиления низких частот рекомендуется поэкспериментировать с подбором номиналов элементов и режимов работы усилителей (рис. 1 - 4).

Улучшениые варианты однотранзисторного усилителя

Усложненные и улучшенные по сравнению со схемой на рис. 1 схемы усилителей приведены на рис. 2 и 3. В схеме на рис. 2 каскад усиления дополнительно содержит цепочку частотнозависимой отрицательной обратной связи (резистор R2 и конденсатор С2), улучшающей качество сигнала.

Рис. 2. Схема однотранзисторного УНЧ с цепочкой частотнозависимой отрицательной обратной связи.

Рис. 3. Однотранзисторный усилитель с делителем для подачи напряжения смещения на базу транзистора.

Рис. 4. Однотранзисторный усилитель с автоматической установкой смещения для базы транзистора.

В схеме на рис. 3 смещение на базу транзистора задано более «жестко» с помощью делителя, что улучшает качество работы усилителя при изменении условий его эксплуатации. «Автоматическая» установка смещения на базе усилительного транзистора применена в схеме на рис. 4.

Двухкаскадный усилитель на транзисторах

Соединив последовательно два простейших каскада усиления (рис. 1), можно получить двухкаскадный УНЧ (рис. 5). Усиление такого усилителя равно произведению коэффициентов усиления отдельно взятых каскадов. Однако получить большое устойчивое усиление при последующем наращивании числа каскадов нелегко: усилитель скорее всего самовозбудится.

Рис. 5. Схема простого двухкаскадного усилителя НЧ.

Новые разработки усилителей НЧ, схемы которых часто приводят на страницах журналов последних лет, преследуют цель достижения минимального коэффициента нелинейных искажений, повышения выходной мощности, расширения полосы усиливаемых частот и т.д.

В то же время, при наладке различных устройств и проведении экспериментов зачастую необходим несложный УНЧ, собрать который можно за несколько минут. Такой усилитель должен содержать минимальное число дефицитных элементов и работать в широком интервале изменения напряжения питания и сопротивления нагрузки.

Схема УНЧ на полевом и кремниевом транзисторах

Схема простого усилителя мощности НЧ с непосредственной связью между каскадами приведена на рис. 6 [Рл 3/00-14]. Входное сопротивление усилителя определяется номиналом потенциометра R1 и может изменяться от сотен Ом до десятков МОм. На выход усилителя можно подключать нагрузку сопротивлением от 2...4 до 64 Ом и выше.

При высокоомной нагрузке в качестве VT2 можно использовать транзистор КТ315. Усилитель работоспособен в диапазоне питающих напряжений от 3 до 15 В, хотя приемлемая работоспособность его сохраняется и при снижении напряжения питания вплоть до 0,6 В.

Емкость конденсатора С1 может быть выбрана в пределах от 1 до 100 мкФ. В последнем случае (С1 =100 мкФ) УНЧ может работать в полосе частот от 50 Гц до 200 кГц и выше.

Рис. 6. Схема простого усилителя низкой частоты на двух транзисторах.

Амплитуда входного сигнала УНЧ не должна превышать 0,5...0,7 В. Выходная мощность усилителя может изменяться от десятков мВт до единиц Вт в зависимости от сопротивления нагрузки и величины питающего напряжения.

Настройка усилителя заключается в подборе резисторов R2 и R3. С их помощью устанавливают напряжение на стоке транзистора VT1, равное 50...60% от напряжения источника питания. Транзистор VT2 должен быть установлен на теплоотводя-щей пластине (радиаторе).

Трекаскадный УНЧ с непосредственной связью

На рис. 7 показана схема другого внешне простого УНЧ с непосредственными связями между каскадами. Такого рода связь улучшает частотные характеристики усилителя в области нижних частот, схема в целом упрощается.

Рис. 7. Принципиальная схема трехкаскадного УНЧ с непосредственной связью между каскадами.

В то же время настройка усилителя осложняется тем, что каждое сопротивление усилителя приходится подбирать в индивидуальном порядке. Ориентировочно соотношение резисторов R2 и R3, R3 и R4, R4 и R BF должно быть в пределах (30...50) к 1. Резистор R1 должен быть 0,1...2 кОм. Расчет усилителя, приведенного на рис. 7, можно найти в литературе, например, [Р 9/70-60].

Схемы каскадных УНЧ на биполярных транзисторах

На рис. 8 и 9 показаны схемы каскодных УНЧ на биполярных транзисторах. Такие усилители имеют довольно высокий коэффициент усиления Ку. Усилитель на рис. 8 имеет Ку=5 в полосе частот от 30 Гц до 120 кГц [МК 2/86-15]. УНЧ по схеме на рис. 9 при коэффициенте гармоник менее 1% имеет коэффициент усиления 100 [РЛ 3/99-10].

Рис. 8. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 5.

Рис. 9. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 100.

Экономичный УНЧ на трех транзисторах

Для портативной радиоэлектронной аппаратуры важным параметром является экономичность УНЧ. Схема такого УНЧ представлена на рис. 10 [РЛ 3/00-14]. Здесь использовано каскадное включение полевого транзистора VT1 и биполярного транзистора VT3, причем транзистор VT2 включен таким образом, что стабилизирует рабочую точку VT1 и VT3.

При увеличении входного напряжения этот транзистор шунтирует переход эмиттер — база VT3 и уменьшает значение тока, протекающего через транзисторы VT1 и VT3.

Рис. 10. Схема простого экономичного усилителя НЧ на трех транзисторах.

Как и в приведенной выше схеме (см. рис. 6), входное сопротивление этого УНЧ можно задавать в пределах от десятков Ом до десятков МОм. В качестве нагрузки использован телефонный капсюль, например, ТК-67 или ТМ-2В. Телефонный капсюль, подключаемый при помощи штекера, может одновременно служить выключателем питания схемы.

Напряжение питания УНЧ составляет от 1,5 до 15 В, хотя работоспособность устройства сохраняется и при снижении питающего напряжения до 0,6 В. В диапазоне напряжения питания 2... 15 В потребляемый усилителем ток описывается выражением:

1(мкА) = 52 + 13*(Uпит)*(Uпит),

где Uпит - напряжение питания в Вольтах (В).

Если отключить транзистор VT2, потребляемый устройством ток увеличивается на порядок.

Двухкаскадные УНЧ с непосредственной связью между каскадами

Примерами УНЧ с непосредственными связями и минимальным подбором режима работы являются схемы, приведенные на рис. 11 - 14. Они имеют высокий коэффициент усиления и хорошую стабильность.

Рис. 11. Простой двухкаскадный УНЧ для микрофона (низкий уровень шумов, высокий КУ).

Рис. 12. Двухкаскадный усилитель низкой частоты на транзисторах КТ315.

Рис. 13. Двухкаскадный усилитель низкой частоты на транзисторах КТ315 - вариант 2.

Микрофонный усилитель (рис. 11) характеризуется низким уровнем собственных шумов и высоким коэффициентом усиления [МК 5/83-XIV]. В качестве микрофона ВМ1 использован микрофон электродинамического типа.

В роли микрофона может выступать и телефонный капсюль. Стабилизация рабочей точки (начального смещения на базе входного транзистора) усилителей на рис. 11 - 13 осуществляется за счет падения напряжения на эмиттерном сопротивлении второго каскада усиления.

Рис. 14. Двухкаскадный УНЧ с полевым транзистором.

Усилитель (рис. 14), имеющий высокое входное сопротивление (порядка 1 МОм), выполнен на полевом транзисторе VT1 (истоковый повторитель) и биполярном — VT2 (с общим).

Каскадный усилитель низкой частоты на полевых транзисторах, также имеющий высокое входное сопротивление, показан на рис. 15.

Рис. 15. схема простого двухкаскадного УНЧ на двух полевых транзисторах.

Схемы УНЧ для работы с низкоОмной нагрузкой

Типовые УНЧ, предназначенные для работы на низкоомную нагрузку и имеющие выходную мощность десятки мВт и выше, изображены на рис. 16, 17.

Рис. 16. Простой УНЧ для работы с включением нагрузки с низким сопротивлением.

Электродинамическая головка ВА1 может быть подключена к выходу усилителя, как показано на рис. 16, либо в диагональ моста (рис. 17). Если источник питания выполнен из двух последовательно соединенных батарей (аккумуляторов), правый по схеме вывод головки ВА1 может быть подключен к их средней точки напрямую, без конденсаторов СЗ, С4.

Рис. 17. Схема усилителя низкой частоты с включением низкоомной нагрузки в диагональ моста.

Если вам нужна схема простого лампового УНЧ то такой усилитель можно собрать даже на одной лампе, смотрите у нас на сайте по электронике в соответствующем разделе.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Исправления в публикации: на рис. 16 и 17 вместо диода Д9 установлена цепочка из диодов.

Министерство образования Российской Федерации

Ижевский государственный технический университет

Кафедра «Конструирование радиоэлектронной аппаратуры»

Курсовая работа

“Расчет УНЧ на БПТ”

Выполнил: студент группы 671

А.Н. Кирдяшкин

Проверил: С. А. Дерендяев

Ижевск 2003 г.

  1. Техническое задание.
  2. Цель работы.
  3. Принципиальная схема каскада.
  4. Определение типа транзисторов.
  5. Эквивалентная схема усилителя .
  6. Расчет АЧХ и ФЧХ усилителя.
  7. Вывод .
  8. Литература .

Задание по работе:

  • Коэффициент усиления – не менее 30дб;
  • Полоса пропускания от 10 Гц до 10 КГц;
  • Допустимая неравномерность частотной характеристики: Мн=Мв=1,41;
  • Амплитуда входного сигнала – 10 мВ ;
  • Входное сопротивление не менее 10 Ком;
  • Сопротивление нагрузки не более 10 Ком;
  • Емкость нагрузки – 50 пФ ;
  • Напряжение источника- + 9В .

Цель работы: Научиться рассчитывать УНЧ на БПТ.

Требования, предъявляемые к усилителю.

Для того чтобы, спроектировать усилитель. Необходимо знать: выходную мощность усилителя P вых. , выходное напряжение U вых., или сопротивление нагрузки R н . Допустимый коэффициент гармоник К г, рабочий диапазон частот (f н и f в), частотные искажения на низшей и высшей рабочих частотах Мн. дБ и Мв дБ; входные данные: входное напряжение U вх, внутреннее сопротивление источника сигнала R и.

К роме указанных основных данных, должно быть известно назначение усилителя, условия его эксплуатации (например, диапазон измерения температуры окружающей среды и т. д.) , тип источника питания (выпрямитель, аккумулятор, гальванический элемент и др.).

Последовательность расчета усилителя.

Проектирования усилителя начинают с составления блок-схемы и выбора ее элементов, исходя из предьявленых к усилителю требований. Типовая блок-схема усилителя с входным и выходным устройствами, предварительным и мощным усилителями изображена на рисунке.

При выборе блок-схемы решают, ли в проектируемом усилителе входное выходные устройства, мощный усилитель, предварительный усилитель. Составив блок-схему усилителя, выбирают принципиальные схемы входного и выходного устройств (реостатно-емкостные, трансформаторные), каскада мощного усилителя (одноактный, двухтактный, трансформаторный, бестрансформаторный), каскадов предварительного усиления (с прямой связью, реостатный, трансформаторный, инверсный и т. д.). После этого выбирают транзисторы для всех усилительных каскадов и находят число каскадов, исходя из заданной выходной мощности или выходного напряжения и напряжения источника сигналов, приближенно определив требуемый от каскадов коэффициент усиления. После чего составляют принципиальную ориентировочную схему усилителя и распределяют заданные частотные искажения по цепям и каскадам, вносящим эти искажения. Распределение Мн и Мв производят отдельно на низшей и высшей рабочих частотах, затем переходят к выбору режимов работы транзисторов и электрическому расчету деталей схемы. Расчет усилителя производят, начиная с оконечного каскада, затем рассчитывают предоконечный каскад т. д.

Выбор схемы оконечного каскада, транзистора для него, режима работы и способа включения.

В транзисторных усилителях звуковой частоты оконечный каскад обычно является каскадом мощного усиления должен отдавать в нагрузку заданную мощность сигнала при наименьшим потреблении мощности от источников питания и допустимом уровне нелинейных и частотных искажений. При проектировании оконечного каскада, прежде всего, решают, будет ли каскад одноактным или двухтактным. При этом учитывают, что двухтактный каскад отдает вдвое большую мощность, чем одноактный. Имеет меньший коэффициент гармоник, выходной трансформатор без постоянного подмагничивания и допускает в три-пять раз большую пульсацию источника питания, но требует двух транзисторов, выходной трансформатор с удвоенным числом витков первичной обмотки и средней точкой, а также инверсную схему предыдущего каскада. Кроме того, двухтактная схема позволяет использовать экономичный режим. Во, что сильно уменьшает необходимую мощность источника питания усилителя. При включении с общим эмиттером и общим коллектором транзисторы в плечах двухтактной схемы необходимо подбирать с одинаковыми значениями , а также по возможности с одинаковой граничной частотной.

Одноактный каскад имеет один транзистор и может быть использован только в режиме А, что увеличивает мощность источника питания. Он не требует инверсной схемы в предыдущем каскаде, допускает меньшую пульсацию источника питания, имеет более высокий коэффициент гармоник. Размеры выходного трансформатора у такого каскада больше из-за наличия постоянного подмагничивания.

Схема электрическая принципиальная УНЧ

Рис. 1

Задачи расчета.

Для расчета транзисторного каскада усиления необходимо иметь следующие данные: выходную мощность Р. вых, сопротивление нагрузки R .н., допустимый коэффициент гармоник К. г, низшую и высшую рабочие частоты f н и f в, допустимые коэффициенты частотных искажений каскада Мн и Мв, низшую и высшую температуру окружающей среды Т окр. макс. И Токр. мин. Кроме того, должен быть известен тип источника питания (сеть переменного тока, сухие батареи, аккумуляторы). В расчет каскада усилителя входит: выбор напряжения источника питания, если оно не задано, выбор точки покоя (тока покоя выходной цепи), тока и напряжения смешения входной цепи, сопротивления нагрузки выходной цепи переменному току, проверка по выходной динамической характеристике (нагрузочной прямой), отдаваемой каскадом мощности Р-, определение амплитуды тока и напряжения входного сигнала (входной мощности) и входного сопротивления каскада, расчет коэффициента гармоник каскада Кг, расчет сопротивлений, задающих смещение, и цепи стабилизации, если она необходима. К расчету каскада усилителя также относится расчет электрических данных выходного трансформатора, его конструктивный расчет и расчет радиатора, охлаждающего транзистор каскада мощного усиления.

Конструкция радиаторов, охлаждающих, транзисторы каскадов может быть различной. Радиатор выполняют из металла с высокой теплоотводностью обычно из алюминия.

Определение типа транзисторов .

Для усилительного каскада транзистор выбирают по трем параметрам: верхней граничной частоте f  , величине тока покоя коллектора I K0 , и наибольшему допустимому напряжению коллектора U КЭ доп. .

Граничная частота передачи тока базы f  должна более чем в 5 раз превышать заданную верхнюю частоту усилителя f в :

f  5 f В = 50000 Гц.

Ток покоя коллектора выбирается из условия I К доп. > I К0 > 1.5 I Н, , где k =20 lg (U Н / U 1 ), U Н =100 mB , I Н = U Н / R Н =100мВ/10кОм=10 мкА. I К доп. > I К0 > 1.5*10 mkA =15 mkA .

Напряжение питания усилителя Е к должно быть выбрано исходя из значения наибольшего допустимого напряжения коллектора, т.е. меньше 0.8 U КЭ доп. .

U КЭ доп =30В, зададимся E К =9В<0,8* U КЭ доп =0,8*30=24В.

Поставленным требованиям удовлетворяет импортный транзистор Q 2 N 3904.

Его параметры:

– f  = 250 МГц

– I К доп. = 100 мА >> 1.5 I К = 1 мА

– U КЭ доп. = 25 В. Зададимся Е К = 9В < 0.8U КЭ доп. = 24В.

Выбор режима работы транзистора по постоянному току и расчет номиналов элементов усилителя.

Расчет выходного каскада с общим эмиттером:

По семейству выходных и входных характеристик транзистора выберем рабочую точку,

для этого построим нагрузочную прямую: выбираем значение тока коллектора I К , I К0 =10м A , U КЭ =1/2* Е К =4,5 B .

DesignLab R 1  Е П / I kmax =418Ом.

Задав параметры схемы, построим график рисунок 2.

Рис. 2

К0 =10м A , U КЭ =4,5 B .  I Б =25мк A .

Построим входную характеристику транзистора рисунок. 3.

рис. 3

Расчет.

Сопротивление нагрузки: R Н =10кОм.

Находим амплитуду выходного сигнала: K =20 lg (U Н / U 1 ), выражаем U Н , U Н =250 mB .

Ток коллектора покоя: I К0 =10м A .

По входной характеристике рис. 3 находим: ток покоя базы, напряжение покоя между базой и эмиттером: U БЭ0 =0,667 B , I Б0 =0,05м A .

r ВХ =  U /  I =(0,680-0,654)/(0,078-0,03)=0,8кОм.

Сопротивление в цепи коллектора R K рассчитывается: R K =(E П - U КЭ )/ I К0 =(9-4,5)В/10м A =450Ом.

Рассчитываем сопротивление в цепи эмиттера R Э . Для этого, прежде всего, зададимся падением напряжения на нем:U Rэ =0.2 E П =1,8В

Отсюда R Э2 = U R Э / I Э0  U R Э / I K 0 = 180Ом.

R 4 : R 4 =(E П - U Э0 - U БЭ0 )/(I Б0 + I Д ), где U Э0 =0.2 E П =1,8В. I Д =(2-5) I Б0 =0,15м A .

R 4 =(9-1,8-0,667)/(0,05+0,15)=32,6кОм.

Сопротивление делителя: R 5 =(U Э0 + U БЭ0 )/ I Д =(1,8+0,667)/0,15=16кОм.

R ВЫХ =450Ом.

R ВХ =[(R 4 R 5 )/(R 4 + R 5 )]* r ВХ /[(R 4 R 5 )/(R 4 + R 5 )]+ r ВХ =(10,8*0,8)/(10,8+0,8)=0,7кОм.

Расчет входного каскада с общим коллектором:

По семейству выходных и входных характеристик транзистора выберем рабочую точку, для этого построим нагрузочную прямую: выбираем значение тока коллектора I К , I К0 =5м A , U КЭ =1/2* Е К =4,5 B .

Построим выходную характеристику транзистора, для этого в DesignLab ’е выполним схему включения транзистора с общим эмиттером, где R 1  Е П / I kmax =850Ом. Задав параметры схемы, построим график рисунок 2 .

рис. 4

Рабочая точка имеет следующие координаты I К0 =5м A , U КЭ =4,5 B ,  I Б =25мк A .

Построим входную характеристику транзистора рис. 4.

Расчет

Сопротивление нагрузки: R Н =0,7кОм.

Ток коллектора покоя: I К0 =5м A .

По входной характеристике рис. 4 находим: ток покоя базы, напряжение покоя между базой и эмиттером: U БЭ0 =0,650 B , I Б0 =0,025мА.

Напряжение коллектор – эмиттер покоя: U КЭ0 =(0,4-0,45) E П =0,4*9=3,6В.

Входное сопротивление транзистора, характеризуется сопротивлением цепи база – эмиттер: r ВХ =  U /  I =1кОм.

Сопротивление эмиттера R 3 : R 3 =(E П - U КЭ0 )/ I Э =(9-3,6)/5м=1кОм.

Рассчитываем сопротивление делителя R 2 : R 2 =(E П - U КЭ0 - U БЭ0 )/ I Б0

R 2 =(9-3,6-0,650)/0,025=190 кОм .

Выходное сопротивление каскада: R ВЫХ = R Э  r К(Э) , где r Э =  Т /(I К0 + I Б0 ), r Э =26/(10+0,025)=2,6Ом, R ВЫХ =1000*2,6/(1000+2,6)=2,6Ом.

Входное сопротивление каскада: R ВХ =(1+  )(R 3 * R Н )/(R 3 + R Н ).

рис . 5

где  =  h 21 Э min * h 21 Э max =  400 * 1000 = 632. R ВХ =(1+632)(1*0,7)/(1+0,7)=260кОм.

Входное сопротивление усилительного каскада: R ’ ВХ = R ВХ  R 2 = (260*190)/(260+190) =110кОм.

Расчет емкостей С 1 , С 2 , С 3 , С 4 .

Для расчета разделительных конденсаторов С 1 , С 2 , С 3 необходимо задаться коэффициентом частотных искажений на нижней рабочей частоте М НР , вносимых этим конденсатором, распределяя заданные допустимые искажения M Н = 1.41 дБ между разделительным. С р. и блокировочным С 4 конденсаторами.

Блокировочный конденсатор. С: С Э =(10 – 20)/2  f Н R 7 , где f Н =10Гц.

С Э =10/6,28*10*180=884мкФ.

Разделительные конденсаторы С 1 , С 2 , С 3 : С 1 =1/(2  f Н *(R 1 + R ’ ВХ )*  М Н 2 -1), где М Н =1,41, С 1 =1/(6,28*10*142010*0,994)=112нФ.

С 2 =1/(2  f Н *(R ВЫХ + R ВХ )*  М Н 2 -1), С 1 =1/(6,28*10*8405*0,994)=1,2мкФ.

С 3 =1/(2  f Н *(R ВЫХ + R ВХ )*  М Н 2 -1), С 1 =1/(6,28*10*10002,6*0,994)=1,6мкФ.

Эквивалентная схема усилителя.

Rк1

rвх1

rвх2

Rвых1

Rвых2

Cр1

Cр2

h21Iб1

h21Iб2

0,2МОм

32,6кОм

16кОм

0,4кОм

1кОм

0,8кОм

2,6Ом

450Ом

112нФ

1,2мкФ

10мА

20мА

Расчет АЧХ и ФЧХ усилителя.

Для построения АЧХ и ФЧХ характеристик, в DesignLab ’е выполним схему усилительного каскада низкой частоты, который представлен на рис. 6

Рис. 7

Задав номиналы элементов, зайдем в диалоговое окно и выберем меню Analysis режима Setup (устанавливаем параметры). В меню Analysis режима Setup строим графики, которые представлены на рисунке 7.

Мы наблюдаем на рисунке 7, что полоса пропускания немного уже (не соответствует техническим характеристикам), для того чтобы расширить полосу пропускания будем изменять емкость разделительных конденсаторов, т.е. увеличивать. Также изменим амплитуду, для этого будем изменять сопротивление R 7. Рис. 8

АЧХ ФЧХ

рис. 8

Изображаем графики с новыми параметрами.


Вывод.

В курсовом проекте, я научился: вычислять АЧХ и ФЧХ усилителя по полученной функции, составлять эквивалентную схему, рассчитывать номиналы пассивных элементов, сравнивать результаты.

Список литературы .

  1. Ю. А. Буланов, С. Н. Усов “Усилители и радиоприемные устройства” Москва “Высшая школа” 1980.
  2. И. П. Жеребцов “Основы электроники” ЭНЕРГОАТОМИЗДАТ 1985г.
  3. Г. В. Войшвилло “Усилительные устройство” Москва “Радио и связь” 1983.
  4. И. П. Степаненко “Основы теории транзисторов и транзисторных схем” “Энергия” Москва 1967.
  5. А. В. Цыкина “Проектирование транзисторных усилителей” “Связь” Москва 1965.

В данной статье расскажем про транзистор. Покажем схемы его подключения и расчёт транзисторного каскада с общим эмиттером.

ТРАНЗИСТОР — это полупроводниковый прибор для усиления, генерирования и преобразования электрических колебаний, выполненный на основе монокристаллического полупроводника (Si – кремния, или — германия), содержащего не менее трёх областей с различной - электронной (n ) и дырочной (p ) - проводимостью. Изобретён в 1948 американцами У. Шокли, У. Браттейном и Дж. Бардином. По физической структуре и механизму управления током различают транзисторы биполярные (чаще называют просто транзисторами) и униполярные (чаще называют полевыми транзисторами). В первых, содержащих два, или более электронно-дырочных перехода, носителями заряда служат как электроны, так и дырки, во вторых - либо электроны, либо дырки. Термн «транзистор» нередко используют для обозначения портативных радиовещательных приёмников на полупроводниковых приборах.

Управление током в выходной цепи осуществляется за счёт изменения входного напряжения или тока. Небольшое изменение входных величин может приводить к существенно большему изменению выходного напряжения и тока. Это усилительное свойство транзисторов используется в аналоговой технике (аналоговые ТВ, радио, связь и т. п.).

Биполярный транзистор

Биполярный транзистор может быть n-p-n и p-n-p проводимости. Не заглядывая во внутренности транзистора, можно отметить разницу проводимостей лишь в полярности подключения в практических схемах источников питания, конденсаторов, диодов, которые входят в состав этих схем. На рисунке справа графически изображены n-p-n и p-n-p транзисторы.

У транзистора три вывода. Если рассматривать транзистор как четырёхполюсник, то у него должно быть два входных и два выходных вывода. Следовательно, какой то из выводов должен быть общим, как для входной, так и для выходной цепи.

Схемы включения транзистора

Схема включения транзистора с общим эмиттером – предназначена для усиления амплитуды входного сигнала по напряжению и по току. При этом входной сигнал, усиливаясь транзистором, инвертируется. Другими словами фаза выходного сигнала поворачивается на 180 градусов. Эта схема, является основной, для усиления сигналов разной амплитуды и формы. Входное сопротивление транзисторного каскада с ОЭ бывает от сотен Ом до единиц килоом, а выходное — от единиц до десятков килоом.

Схема включения транзистора с общим коллектором – предназначена для усиления амплитуды входного сигнала по току. Усиления по напряжению в такой схеме не происходит. Правильнее сказать, коэффициент усиления по напряжению даже меньше единицы. Входной сигнал транзистором не инвертируется.
Входное сопротивление транзисторного каскада с ОК бывает от десятков до сотен килоом, а выходное в пределах сотни ом — единиц килоом. Благодаря тому, что в цепи эмиттера находится, как правило, нагрузочный резистор, схема обладает большим входным сопротивлением. Кроме того, благодаря усилению входного тока, она обладает высокой нагрузочной способностью. Эти свойства схемы с общим коллектором используются для согласования транзисторных каскадов — как «буферный каскад». Так как, входной сигнал, не усиливаясь по амплитуде «повторяется» на выходе, схему включения транзистора с общим коллектором ещё называют Эмиттерный повторитель .

Имеется ещё Схема включения транзистора с общей базой . Эта схема включения в теории есть, но в практике она реализуется очень тяжело. Такая схема включения используется в высокочастотной технике. Особенность её в том, что у неё низкое входное сопротивление, и согласовать такой каскад по входу сложно. Опыт в электронике у меня не малый, но говоря об этой схеме включения транзистора, я извините, ничего не знаю! Пару раз использовал как «чужую» схему, но так и не разбирался. Объясню: по всем физическим законам транзистор управляется его базой, вернее током, протекающим по пути база-эмиттер. Использование входного вывода транзистора — базы на выходе — не возможно. На самом деле базу транзистора через конденсатор «сажают» по высокой частоте на корпус, а на выходе её и не используют. А гальванически, через высокоомный резистор, базу связывают с выходом каскада (подают смещение). Но подавать смещение, по сути можно откуда угодно, хоть от дополнительного источника. Всё равно, попадающий на базу сигнал любой формы гасится через тот же самый конденсатор. Чтобы такой каскад работал, входной вывод — эмиттер через низкоомный резистор «сажают» на корпус, отсюда и низкое входное сопротивление. В общем, схема включения транзистора с общей базой — тема для теоретиков и экспериментаторов. На практике она встречается крайне редко. За свою практику в конструировании схем никогда не сталкивался с необходимостью использования схемы включения транзистора с общей базой. Объясняется это свойствами этой схемы включения: входное сопротивление — от единиц до десятков Ом, а выходное сопротивление — от сотен килоом до единиц мегаом. Такие специфические параметры — редкая потребность.

Биполярный транзистор может работать в ключевом и линейном (усилительном) режимах. Ключевой режим используется в различных схемах управления, логических схемах и др. В ключевом режиме, транзистор может находиться в двух рабочих состояниях – открытом (насыщенном) и закрытом (запертом) состоянии. Линейный (усилительный) режим используется в схемах усиления гармонических сигналов и требует поддержания транзистора в «наполовину» открытом, но не насыщенном состоянии.

Для изучения работы транзистора, мы рассмотрим схему включения транзистора с общим эмиттером, как наиболее важную схему включения.

Схема изображена на рисунке. На схеме VT – собственно транзистор. Резисторы R б1 и R б2 – цепочка смещения транзистора, представляющая собой обыкновенный делитель напряжения. Именно эта цепь обеспечивает смещение транзистора в «рабочую точку» в режиме усиления гармонического сигнала без искажений. Резистор R к – нагрузочный резистор транзисторного каскада, предназначен для подвода к коллектору транзистора электрического тока источника питания и его ограничения в режиме «открытого» транзистора. Резистор R э – резистор обратной связи, по своей сути увеличивает входное сопротивление каскада, при этом, уменьшает усиление входного сигнала. Конденсаторы С выполняют функцию гальванической развязки от влияния внешних цепей.

Чтобы Вам было понятнее, как работает биполярный транзистор, мы проведём аналогию с обычным делителем напряжения (см. рис. ниже). Для начала, резистор R 2 делителя напряжения сделаем управляемым (переменным). Изменяя сопротивление этого резистора, от нуля до «бесконечно» большого значения, мы можем получить на выходе такого делителя напряжение от нуля до значения, подаваемого на его вход. А теперь, представим себе, что резистор R 1 делителя напряжения – это коллекторный резистор транзисторного каскада, а резистор R 2 делителя напряжения – это переход транзистора коллектор-эмиттер. При этом, подавая на базу транзистора управляющее воздействие в виде электрического тока, мы изменяем сопротивление перехода коллектор-эмиттер, тем самым меняем параметры делителя напряжения. Отличие от переменного резистора в том, что транзистор управляется слабым током. Именно так и работает биполярный транзистор. Вышеуказанное изображено на рисунке ниже:

Для работы транзистора в режиме усиления сигнала, без искажения последнего, необходимо обеспечить этот самый рабочий режим. Говорят о смещении базы транзистора. Грамотные специалисты тешат себя правилом: Транзистор управляется током – это аксиома. Но режим смещения транзистора устанавливается напряжением база-эмиттер, а не током – это реальность. И у того, кто не учитывает напряжение смещения, никакой усилитель работать не будет. Поэтому в расчётах его значение должно учитываться.

Итак, работа биполярного транзисторного каскада в режиме усиления происходит при определённом напряжении смещения на переходе база-эмиттер. Для кремниевого транзистора значение напряжения смещения лежит в пределах 0,6…0,7 вольт, для германиевого – 0,2…0,3 вольта. Зная об этом понятии, можно не только рассчитывать транзисторные каскады, но и проверять исправность любого транзисторного усилительного каскада. Достаточно мультиметром с высоким внутренним сопротивлением измерить напряжение смещения база-эмиттер транзистора. Если оно не соответствует 0,6…0,7 вольт для кремния, или 0,2…0,3 вольта для германия, тогда ищите неисправность именно здесь – либо неисправен транзистор, либо неисправны цепи смещения или развязки этого транзисторного каскада.

Вышеуказанное, изображено на графике – вольтамперной характеристике (ВАХ).

Большинство из «спецов», посмотрев на представленную ВАХ скажет: Что за ерунда нарисована на центральном графике? Так выходная характеристика транзистора не выглядит! Она представлена на правом графике! Отвечу, там всё правильно, а началось это с электронно-вакуумных ламп. Раньше вольтамперной характеристикой лампы считалось падение напряжения на анодном резисторе. Сейчас, продолжают измерять на коллекторном резисторе, а на графике приписывают буквы, обозначающие падение напряжения на транзисторе, в чём глубоко ошибаются. На левом графике I б – U бэ представлена входная характеристика транзистора. На центральном графике I к – U кэ представлена выходная вольтамперная характеристика транзистора. А на правом графике I R – U R представлен вольтамперный график нагрузочного резистора R к , который обычно выдают за вольтамперную характеристику самого транзистора.

На графике имеет место линейный участок, используемый для линейного усиления входного сигнала, ограниченный точками А и С . Средняя точка – В , является именно той точкой, в которой необходимо содержать транзистор, работающий в усилительном режиме. Этой точке соответствует определённое напряжение смещения, которое при расчётах обычно берут: 0,66 вольт для транзистора из кремния, или 0,26 вольт для транзистора из германия.

По вольтамперной характеристике транзистора мы видим следующее: при отсутствии, или малом напряжении смещения на переходе база-эмиттер транзистора, ток базы и ток коллектора отсутствуют. В этот момент на переходе коллектор-эмиттер падает всё напряжение источника питания. При дальнейшем повышении напряжения смещения база-эмиттер транзистора, транзистор начинает открываться, появляется ток базы и вместе с ним растёт ток коллектора. При достижении «рабочей области» в точке С , транзистор входит в линейный режим, который продолжается до точки А . При этом, падение напряжения на переходе коллектор-эмиттер уменьшается, а на нагрузочном резисторе R к , наоборот увеличивается. Точка В – рабочая точка смещения транзистора, — это такая точка, при которой на переходе коллектор — эмиттер транзистора, как правило, устанавливается падение напряжения равное ровно половине напряжения источника питания. Отрезок АЧХ от точки С , до точки А называют рабочей областью смещения. После точки А , ток базы и следовательно ток коллектора резко возрастают, транзистор полностью открывается — входит в насыщение. В этот момент, на переходе коллектор-эмиттер падает напряжение обусловленное структурой n-p-n переходов, которое приблизительно равно 0,2…1 вольт, в зависимости от типа транзистора. Всё остальное напряжение источника питания падает на сопротивлении нагрузки транзистора – резисторе R к ., который кроме того, ограничивает дальнейший рост тока коллектора.

По нижним «дополнительным» рисункам, мы видим, как изменяется напряжение на выходе транзистора в зависимости от подаваемого на вход сигнала. Выходное напряжение (падение напряжения на коллекторе) транзистора противофазно (на 180 градусов) к входному сигналу.

Расчёт транзисторного каскада с общим эмиттером (ОЭ)

Прежде чем перейти непосредственно к расчёту транзисторного каскада, обратим внимание на следующие требования и условия:

Расчёт транзисторного каскада проводят, как правило, с конца (т.е. с выхода);

Для расчета транзисторного каскада нужно определить падение напряжения на переходе коллектор-эмиттер транзистора в режиме покоя (когда отсутствует входной сигнал). Оно выбирается таким, чтобы получить максимально неискаженный сигнал. В однотактной схеме транзисторного каскада работающего в режиме «A» это, как правило, половина значения напряжения источника питания;

В эмиттерной цепи транзистора бежит два тока — ток коллектора (по пути коллектор-эмиттер) и ток базы (по пути база-эмиттер), но так как ток базы достаточно мал, им можно пренебречь и принять, что ток коллектора равен току эмиттера;

Транзистор – усилительный элемент, поэтому справедливо будет заметить, что способность его усиливать сигналы должна выражаться какой-то величиной. Величина усиления выражается показателем, взятым из теории четырёхполюсников — коэффициент усиления тока базы в схеме включения с общим эмиттером (ОЭ) и обозначается он — h 21 . Его значение приводится в справочниках для конкретных типов транзисторов, причём, обычно в справочниках приводится вилка (например: 50 – 200). Для расчётов обычно выбирают минимальное значение (из примера выбираем значение — 50);

Коллекторное (R к ) и эмиттерное (R э ) сопротивления влияют на входное и выходное сопротивления транзисторного каскада. Можно считать, что входное сопротивление каскада R вх =R э *h 21 , а выходное равно R вых =R к . Если Вам не важно входное сопротивление транзисторного каскада, то можно обойтись вовсе без резистора R э ;

Номиналы резисторов R к и R э ограничивают токи, протекающие через транзистор и рассеиваемую на транзисторе мощность.

Порядок и пример расчёта транзисторного каскада с ОЭ

Исходные данные:

Питающее напряжение U и.п. =12 В.

Выбираем транзистор, например: Транзистор КТ315Г, для него:

P max =150 мВт; I max =150 мА; h 21 >50.

Принимаем R к =10*R э

Напряжение б-э рабочей точки транзистора принимаем U бэ = 0,66 В

Решение:

1. Определим максимальную статическую мощность, которая будет рассеиваться на транзисторе в моменты прохождения переменного сигнала, через рабочую точку В статического режима транзистора. Она должна составлять значение, на 20 процентов меньше (коэффициент 0,8) максимальной мощности транзистора, указанной в справочнике.

Принимаем P рас.max =0,8*P max =0,8*150 мВт=120 мВт

2. Определим ток коллектора в статическом режиме (без сигнала):

I к0 =P рас.max /U кэ0 =P рас.max /(U и.п. /2) = 120мВт/(12В/2) = 20мА.

3. Учитывая, что на транзисторе в статическом режиме (без сигнала) падает половина напряжения питания, вторая половина напряжения питания будет падать на резисторах:

(R к +R э )=(U и.п. /2)/I к0 = (12В/2)/20мА=6В/20мА = 300 Ом.

Учитывая существующий ряд номиналов резисторов, а также то, что нами выбрано соотношение R к =10*R э , находим значения резисторов:

R к = 270 Ом; R э = 27 Ом.

4. Найдем напряжение на коллекторе транзистора без сигнала.

U к0 =(U кэ0 + I к0 *R э )=(U и.п. — I к0 *R к ) = (12 В — 0,02А * 270 Ом) = 6,6 В.

5. Определим ток базы управления транзистором:

I б =I к /h 21 =/h 21 = / 50 = 0,8 мА.

6. Полный базовый ток определяется напряжением смещения на базе, которое задается делителем напряжения R б1 ,R б2 . Ток резистивного базового делителя должен быть на много больше (в 5-10 раз) тока управления базы I б , чтобы последний не влиял на напряжение смещения. Выбираем ток делителя в 10 раз большим тока управления базы:

R б1 ,R б2 : I дел. =10*I б = 10 * 0,8 мА = 8,0 мА.

Тогда полное сопротивление резисторов

R б1 +R б2 =U и.п. /I дел. = 12 В / 0,008 А = 1500 Ом.

7. Найдём напряжение на эмиттере в режиме покоя (отсутствия сигнала). При расчете транзисторного каскада необходимо учитывать: напряжение база-эмиттер рабочего транзистора не может превысить 0,7 вольта! Напряжение на эмиттере в режиме без входного сигнала примерно равно:

U э =I к0 *R э = 0,02 А * 27 Ом= 0,54 В,

где I к0 — ток покоя транзистора.

8. Определяем напряжение на базе

U б =U э +U бэ =0,54 В+0,66 В=1,2 В

Отсюда, через формулу делителя напряжения находим:

R б2 = (R б1 +R б2 )*U б /U и.п. = 1500 Ом * 1,2 В / 12В = 150 Ом R б1 = (R б1 +R б2 )-R б2 = 1500 Ом — 150 Ом = 1350 Ом = 1,35 кОм.

По резисторному ряду, в связи с тем, что через резистор R б1 течёт ещё и ток базы, выбираем резистор в сторону уменьшения: R б1 =1,3 кОм.

9. Разделительные конденсаторы выбирают исходя из требуемой амплитудно-частотной характеристики (полосы пропускания) каскада. Для нормальной работы транзисторных каскадов на частотах до 1000 Гц необходимо выбирать конденсаторы номиналом не менее 5 мкФ.

На нижних частотах амплитудно-частотная характеристика (АЧХ) каскада зависит от времени перезаряда разделительных конденсаторов через другие элементы каскада, в том числе и элементы соседних каскадов. Ёмкость должна быть такой, чтобы конденсаторы не успевали перезаряжаться. Входное сопротивление транзисторного каскада много больше выходного сопротивления. АЧХ каскада в области нижних частот определяется постоянной времени t н =R вх *C вх , где R вх =R э *h 21 , C вх — разделительная входная емкость каскада. C вых транзисторного каскада, это C вх следующего каскада и рассчитывается она так же. Нижняя частота среза каскада (граничная частота среза АЧХ) f н =1/t н . Для качественного усиления, при конструировании транзисторного каскада необходимо выбирать, чтобы соотношение 1/t н =1/(R вх *C вх )< в 30-100 раз для всех каскадов. При этом чем больше каскадов, тем больше должна быть разница. Каждый каскад со своим конденсатором добавляет свой спад АЧХ. Обычно, достаточно разделительной емкости 5,0 мкФ. Но последний каскад, через Cвых обычно нагружен низкоомным сопротивлением динамических головок, поэтому емкость увеличивают до 500,0-2000,0 мкФ, бывает и больше.

Расчёт ключевого режима транзисторного каскада производится абсолютно так же, как и ранее проведённый расчёт усилительного каскада. Отличие заключается только в том, что ключевой режим предполагает два состояния транзистора в режиме покоя (без сигнала). Он, или закрыт (но не закорочен), или открыт (но не перенасыщен). При этом, рабочие точки «покоя», находятся за пределами точек А и С изображённых на ВАХ. Когда на схеме в состоянии без сигнала транзистор должен быть закрыт, необходимо из ранее изображённой схемы каскада удалить резистор R б1 . Если же требуется, чтобы транзистор в состоянии покоя был открыт, необходимо в схеме каскада увеличить резистор R б2 в 10 раз от расчётного значения, а в отдельных случаях, его можно удалить из схемы.

Расчёт транзисторного каскада окончен.

Курсовой проект содержит 37 листа, 23 иллюстрации, 1 таблицу.

Цель: - углубить знания студентов по курсам, связанным с темой курсового проекта;

Привить навыки самостоятельной работы с технической литературой;

Научить составлять, рассчитывать и анализировать электронные схемы;

Научить грамотно оформлять техническую документацию.

В курсовом проекте содержится краткое описание усилителей низкой частоты, их классификация, применение, основные технические решения. Также разработана структурная и электрическая принципиальная схема усилителя, и произведен ее расчет.

УСИЛИТЕЛЬ, ТРАНЗИСТОР, ВХОДНАЯ ХАРАКТЕРИСТИКА,

НЕЛИНЕЙНЫЕ ИСКАЖЕНИЯ, ВЫХОДНОЙ КАСКАД

1. Введение ………………………………………………….. 3

2. Основная часть

2.1 Аналитический обзор …………………………… 5

2.2 Составление структурной схемы усилителя …… 9

2.3 Разработка электрической принципиальной

схемы усилителя …………………………………………….. 11

2.4 Электрический расчет …………………………. ……… 14

2.5 Анализ спроектированного усилителя …………. ……... 29

3. Заключение ……………………………………………………... 30

4. Перечень ссылок ……………………………………………….. 31

5. Приложение …………………………………………………….. 32

1 Введение

Характерной особенностью современных электронных усилителей является исключительное многообразие схем, по которым они могут быть построены.

Усилители различаются по характеру усиливаемых сигналов: усилители гармонических сигналов, импульсные усилители и т. д. Также они различаются по назначение, числу каскадов, роду электропитания и другим показателям.

Однако одним из наиболее существенных классификационных признаков является диапазон частот электрических сигналов, в пределах которого данный усилитель может удовлетворительно работать. По этому признаку различают следующие основные типы усилителей:

Усилители низкой частоты, предназначенные для усиления непрерывных периодических сигналов, частотный диапазон которых лежит в пределах от десятков герц до десятков килогерц. Характерной особенностью УНЧ является то, что отношение верхней усиливаемой частоты к нижней велико и обычно составляет не менее нескольких десятков.

Усилители постоянного тока – усиливающие электрические сигналы в диапазоне частот от нуля до высшей рабочей частоты. Они позволяют усиливать как переменные составляющие сигнала, так и его постоянную составляющую.

Избирательные усилители – усиливающие сигналы в очень узкой полосе частот. Для них характерна небольшая величина отношения верхней частоты к нижней. Эти усилители могут использоваться как на низких, так и на высоких частотах и выступают в качестве своеобразных частотных фильтров, позволяющих выделить заданный диапазон частот электрических колебаний. Узкая полоса частотного диапазона во многих случаях обеспечивается применением в качестве нагрузки таких усилителей колебательного контура. В связи с этим избирательные усилители часто называют резонансными.

Широкополосные усилители, усиливающие очень широкую полосу частот. Эти усилители предназначены для усиления сигналов в устройствах импульсной связи, радиолокации и телевидения. Часто широкополосные усилители называют видеоусилителями. Помимо своего основного назначения, эти усилители используются в устройствах автоматики и вычислительной техники.

2.1 Аналитический обзор

Современные усилители низкой частоты выполняются преимущественно на биполярных и полевых транзисторах в дискретном или интегральном исполнении, причем усилители в микроисполнении отличаются от своих дискретных аналогов, главным образом, конструктивно-техническими особенностями.

В качестве источника входного сигнала в усилителях низкой частоты могут входить микрофон, звукосниматель, предыдущий усилитель. Большинство из источников входного сигнала развивают очень низкое напряжение. Подавать его непосредственно на каскад усиления мощности не имеет смысла, т. к. при слабом управляющем напряжении невозможно получить значительные изменения выходного тока, а следовательно, выходной мощности. Поэтому в состав структурной схемы усилителя, кроме выходного каскада, отдающего требуемую мощность, входят и каскады предварительного усиления.

Эти каскады принято классифицировать по характеру сопротивления нагрузки в выходной цепи транзистора. Наибольшее применение получили резистивные усилительные каскады, сопротивлением нагрузки которых служит резистор. В качестве нагрузки транзистора может быть использован и трансформатор. Такие каскады называют трансформаторными. Однако в следствии большой стоимости, значительных размеров и массы трансформатора, а также из-за неравномерности амплитудно-частотных характеристик трансформаторные каскады предварительного усиления применяются весьма редко.

В каскадах предварительного усиления на биполярных транзисторах чаще других используется схема с общим эмиттером, которая обладает высоким коэффициентом усиления по напряжению и мощности, сравнительно большим входным сопротивлением и допускает использование одного общего источника питания для цепей эмиттера и коллектора.

Простейшая схема резистивного усилительного каскада с общим эмиттером и питанием от одного источника показана на рис 1.

Рисунок 1

Данная схема получила название схемы с фиксированным базовым током. Смещение фиксированным током базы отличается минимальным числом деталей и малым потреблением тока от источника питания. Кроме того, сравнительно большое сопротивление резистора R б практически не влияет на величину входного сопротивления каскада. Однако этот способ смещения пригоден лишь тогда, когда каскад работает при малых колебаниях температуры транзистора. Кроме того, большой разброс и нестабильность параметров b даже у однотипных транзисторов делают режим работы каскада неустойчивым при смене транзистора, а также с течением времени.

Более эффективной является схема с фиксированным напряжением смещения на базе, представленная на рис 2.

В этой схеме резисторы

и подключенные параллельно источнику питания Е к составляют делитель напряжения. Делитель, образованный резисторами и должен обладать достаточно большим сопротивлением, иначе входное сопротивление каскада окажется малым.

При построении схем транзисторных усилителей приходится принимать меры для стабилизации положения рабочей точки на характеристиках. Основной дестабилизирующий фактор – влияние температуры. Существуют

Рисунок 2

различные способы термостабилизации режима работы транзисторных каскадов. Наиболее распространенные из них реализуются с помощью схем, показанных на рис 3-5.

Рисунок 3 - c терморезистором

Рисунок 4 - с диодом

Рисунок 5 - с цепочкой эмиттерной стабилизации RэСэ

В схеме на рис 3 терморезистор с отрицательным температурным коэффициентом сопротивления включен в базовую цепь таким образом, что при повышении температуры происходит уменьшение отрицательного напряжения на базе за счет уменьшения сопротивления терморезистора. При этом происходит уменьшение тока базы, а следовательно, и тока коллектора.

Одна из возможных схем термостабилизации с помощью полупроводникового диода показана на рис 4. В этой схеме диод включен в обратном направлении, а температурная характеристика обратного тока диода должна быть аналогична температурной характеристике обратного тока коллектора транзистора. При смене транзистора стабильность ухудшается из-за разброса величины обратного тока коллектора.

Наибольшее распространение получила схема термостабилизации режима, показанная на рис 5. В этой схему навстречу фиксированному прямому напряжению смещения, снимаемому с резистора

включено напряжение, возникающее на резисторе R э при прохождении через него тока эмиттера. Пусть, например, при увеличении температуры постоянная составляющая коллекторного тока возрастет. Увеличение тока коллектора приведет к увеличению тока эмиттера и падению напряжения на резисторе R э. В результате напряжение между эмиттером и базой уменьшиться, что приведет к уменьшению тока базы, а следовательно, тока коллектора. В большинстве случаев резистор R э шунтируется конденсатором большой емкости. Это делается для отвода переменной составляющей тока эмиттера от резистора R э.

2.2 Составление структурной схемы усилителя

Структурная схема представлена на рис 6.


Рисунок 6

ВхК - входной каскад

КПУ1 - первый каскад предварительного усиления

КПУ2 - второй каскад предварительного усиления

КПУ3 - третий каскад предварительного усиления

Министерство образования РФ

Уральский Государственный Технический Университет

Кафедра Автоматика и управление в технических системах

РАСЧЕТ ПРЕДВАРИТЕЛЬНОГО УСИЛИТЕЛЯ

НА ТРАНЗИСТОРЕ КТ3107И

Курсовая работа по

Электронике

Студент гр. Р-291а А.С. Клыков

Преподаватель

доцент, к.т.н. В. И. Паутов

Екатеринбург 2000

1. Предварительные данные для расчета усилителя 3

2. Выбор транзистора4

3. Расчет режима транзистора по постоянному току 4

4. Выбор напряжения источника питания 5

5. Расчет элементов, обеспечивающих рабочий режим тр-ра5

6. Расчет емкостей С ф, С 1 , С 2 , С э 7

7. Результаты расчета8

8. АЧХ и ФЧХ усилителя 9

9. Список литературы 10

1. Предварительные данные для расчета усилителя

U Н = 0.2 В

R Н = 0.3 кОм

R С = 0.5 кОм

t max = 70 0 C

f н = 50 Гц

f в = 25 Гц


2. Выбор транзистора.

Для выбранного транзистора добротность D т:

где r¢ б – объемное сопротивление базы, равное 150 Ом C к – емкость коллекторного перехода

По расчетным данным и из условий: Р к max >Р к, B min ³ B необх, ¦ в ³¦ в,необх выбираем транзистор КТ3107И

3. Расчет режима транзистора по постоянному току.


Ток коллектора I к определяем по формуле:
где R вх = В * r э = 1к9 - входное сопротивление каскада Е с – источник сигнала
Напряжение на оллекторе-эмиттере U кэ:Рабочая точка транзистора =1.5 В

I 0 к = 1.82 В

4. Выбор напряжения источника питания.


Найдем R э по формуле:

где S – температурный коэффициент

R б = (5¸10) R вх = 5*1900 = 9500 Ом – общее сопротивление базы


Найдем U б:
Определим R ф:

По ГОСТу выбираем:

R 1 = 6к0 R 2 = 16к0 R э = 3к2 R ф = к45

Проверим выполнение неравенства:

I 0 к * R э + U 0 кэ + I 0 к * R к + (I 0 к + I д ) * R ф ³ Е к

5.824 + 1.5 + 2.5 + 1.179 ³ 5

11 ³ 5 – неравенство выполняется


Определим для повторителя R э2:

U Б2 = U К1 = I 0 э *R э + U 0 Кэ = 1.82мА * 3.2кОм + 1.5В = 7.32 В

U Бэ2 = r¢ б * I 0 э = 150 * 1.82мА = 0.27 В


Найдем R вх2 и R вых2:
Коэффициент усиления первого каскада:
6. Расчет емкостей С ф, С 1 , С 2 , С э.

где К СГ = 40 – коэффициент сглаживания

f П = 100 Гц – основная частота пульсации ист.питания


8. Амплитудно-частотная и фазо-частотная характеристики.
10 20 30 40 60 100 160 320 640 1280 2560 5120 10240 20480 40960 81920 163840
1 1.30103 1.47712125 1.60205999 1.77815125 2 2.20411998 2.50514998 2.80617997 3.10720997 3.40823997 3.70926996 4.01029996 4.31132995 4.61235995 4.91338994 5.21441994
62.8 125.6 188.4 251.2 376.8 628 1004.8 2009.6 4019.2 8038.4 16076.8 32153.6 64307.2 128614.4 257228.8 514457.6 1028915.2
0.2 0.4 0.6 0.8 1.2 2 3.2 6.4 12.8 25.6 51.2 102.4 204.8 409.6 819.2 1638.4 3276.8
5 2.5 1.66666667 1.25 0.83333333 0.5 0.3125 0.15625 0.078125 0.0390625 0.01953125 0.00976563 0.00488281 0.00244141 0.0012207 0.00061035 0.00030518
0.4 0.8 1.2 1.6 2.4 4 6.4 12.8 25.6 51.2 102.4 204.8 409.6 819.2 1638.4 3276.8 6553.6
4.6 1.7 0.46666667 -0.35 -1.56666667 -3.5 -6.0875 -12.64375 -25.521875 -51.1609375 -102.380469 -204.790234 -409.595117 -819.197559 -1638.39878 -3276.79939 -6553.59969
25 6.25 2.77777778 1.5625 0.69444444 0.25 0.09765625 0.02441406 0.00610352 0.00152588 0.00038147 9.5367E-05 2.3842E-05 5.9605E-06 1.4901E-06 3.7253E-07 9.3132E-08
0.16 0.64 1.44 2.56 5.76 16 40.96 163.84 655.36 2621.44 10485.76 41943.04 167772.16 671088.64 2684354.56 10737418.2 42949673
0.21242964 0.50702013 0.90618314 0.94385836 0.53803545 0.27472113 0.16209849 0.07884425 0.03915203 0.01954243 0.00976702 0.00488299 0.00244143 0.00122071 0.00061035 0.00030518 0.00015259
1.35673564 1.03907226 0.43662716 -0.33667482 -1.00269159 -1.29249667 -1.40797942 -1.49187016 -1.53163429 -1.55125265 -1.56102915 -1.56591332 -1.5683549 -1.56957562 -1.57018597 -1.57049115 -1.57064374