Генератор импульсных токов. Высоковольтные генераторы с индуктивными накопителями энергии Электронная схема генератора импульсного тока

Схема и теории действии

Как показано на рис. 3.2, трансформатор с ограничением по току Т1 соединен с мостовым выпрямителем D1-D4 и заряжает внешний накопитель – конденсатор С через резистор защиты от перенапряжения R18. Внешний накопительный конденсатор соединен между землей разряда и электродом искрового разрядника G1. Нагрузка в этом проекте включена не стандартно, а между землей разряда и электродом искрового разрядника G2. Обратите внимание, что нагрузка комплексная, обычно обладающая высокой индуктивностью (не во всех случаях) с небольшим активным сопротивлением от провода индуктивности Load. Электроды искрового разрядника G1 и G2 расположены на расстоянии, большем в 1,2-1,5 раза, чем расстояние пробоя при данном напряжении.

Третий запускающий электрод ТЕ1 разряжается коротким высоковольтным импульсом малой энергии в G2, создавая пик напряжения, ионизирующий

Рис. 3.2. Принципиальная схема импульсного генератора

Примечание:

Специальное замечание относительно диодов D14, D15. Полярность может бьггь изменена для получения боль- шеготриггерного эффекта при нагрузке с низким импедансом, как это имеет место вслучае устройства деформации консервных банок, взрывания провода, плазменного оружия и др.

Внимание! При слишком высоком импедансе нагрузки энергия может направиться назад через диоды и трансформатор Т2 и привести к выходу из строя этих компонентов.

Обратите внимание, что земля схемы и общий провод изолированы друг от друга.

Земля разряда соединена с шасси и заземлением через зеленый провод шнура питания.

Для обеспечения большей безопасности в качестве выключателя S3 рекомендуется использовать кнопки без фиксации, которая включена только в нажатом состоянии.

Если устройство находится в месте, куда имеет доступ неавторизованный персонал, рекомендуется в качестве S4 использовать включатель с замком.

зазор между G1 и G2, что приводит к разряду накопленной во внешнем емкостном накопителе энергии в нагрузку с комплексным сопротивлением.

Напряжение заряда внешнего емкостного накопителя задается цепью рези- стивного делителя R17, который также выдает сигнал для вольтметра Ml. Напряжение заряда задается последовательно соединенным с R17 управляющим переменным сопротивлением R8. Этот управляющий сигнал устанавливает уровень выключения компаратора II, который задает смещение по постоянному току транзистора Q1. В свою очередь, Q1 управляет реле, при этом реле выключается. Контактами обесточенного реле RE1 снимается подача энергии на первичную обмотку Т1. Когда R8 установлено на заданную величину, оно автоматически поддерживает определенный уровень напряжения во внешних емкостных накопителях. Безопасная кнопка S3 предоставляет возможность задержать заряд внешнего конденсатора вручную.

Красный светодиод LA1 загорается при включении питания. Желтый свето- диод LA2 загорается, когда заряд достигает заданной величины.

Цепь запускающего электрода представляет собой специальную систему емкостного разряда (CD), где энергия конденсатора С6 направляется в первичную обмотку импульсного трансформатора Т2. На вторичной обмотке Т2 генерируется последовательность положительных импульсов высокого напряжения, которая подается на конденсаторы С8 и С9 через развязывающие диоды D14 и D15. Эти импульсы постоянного тока высокого напряжения вызывают ионизацию в зазорах за счет разряда через запускающий электрод ТЕ1. На входе этой цепи находится удвоитель напряжения, состоящий из конденсаторов С4, С5 и диодов D8 и D9. Переключатель «Пуск» S1 подает энергию в цепь, вызывая немедленное срабатывание искрового разрядника. Кремниевый триодный тиристор SCR снимает заряд с С6, отпирающий ток на SCR подает динистор DIAC, смещение на который задается переменным сопротивлением R14 и конденсатором С7.

Понижающий трансформатор напряжения 12 В ТЗ питает управляющую цепь, включающую и реле RE1. Если в системе нет напряжения 12 В, запустить ее можно только активировав RE1 вручную. Выпрямитель на диодах D10-D13 выпрямляет переменное напряжение 12 В, который затем фильтруется на емкостном фильтре С1. Резистор R5 развязывает питание для управления через стабилитрон Z3, Z4, который необходим для стабильной работы цепи компаратора. Питание для накопления энергии идет от сети 115 В переменного тока, при этом задействован плавкий предохранитель F1, а включение сети питания 115 В переменного тока осуществляется выключателем S4.

Замечание

В нашей лаборатории в Information Unlimited аппаратура накопления энергии включает 10 стоек масляных конденсаторов. В каждой стойке размещается 50 конденсаторов по 32 мкФ на напряжение 4500 В, соединенных параллельно для достижения общей емкости 1600 мкФ или около 13000 Дж при 4000 В на стойку. Все 10 стоек, соединенных параллельно, дают 130000 Дж. Очень важно при таких уровнях энергии правильно выполнить соединения и собрать систему с соблюдением необходимого расположения и толщины проводов для получения импульсов мощностью в сотни мегаватт. Для защиты персонала от опасного напряжения вокруг накопительных стоек установлены противовзрывные щиты.

Время заряда одной стойки составляет около 10 мин. При таком заряде использование 10 стоек было бы непрактично, поскольку для их заряда потребовалось бы почти 2 ч. Мы используем систему заряда тока 10000 В, 1 А, которая позволяет обеспечить заряд всех 10 стоек масляных конденсаторов для накопления энергии в 130000 Дж в течение 1 мин. Такое высоковольтное зарядное устройство можно приобрести по специальному заказу.

Порядок предварительной сборки устройства

В данном разделе предполагается, что вы знакомы с основными инструментами и имеете достаточный опыт сборки. Импульсный генератор собирается на металлическом шасси 25,4×43,2×3,8 см, изготовленном из оцинкованного железа толщиной 1,54 мм (калибр 22). Он использует трансформатор RMS с ограничением по току 6500 В, 20 мА. Нужно как можно точнее следовать приведенному чертежу. Можно использовать более мощный трансформатор, тогда придется изменить и размер устройства. Предлагаем соединить параллельно до 4 использовавшихся ранее трансформаторов; чтобы получить зарядный ток 80 мА. На передней панели устанавливается вольтметр и средства управления. Рекомендуется заменить S4 на выключатель с замком, если устройство находится в месте, куда имеет доступ неавторизованный персонал.

При сборке устройства соблюдайте следующую последовательность действий:

1. Если вы приобрели набор, разложите и идентифицируйте все компоненты и конструктивные детали.

2. Вырежьте из заготовки плату с сеточной перфорацией 0,25 см и размерами 15,9×10,8 см (6,25×4,25 дюйма).

Рис. 3.3. Монтажная плата импульсного генератора

Примечание:

Пунктирная линия показывает соединения на тыльной стороне платы. Крупные черные точки показывают отверстия в плате, которые используются для установки компонентов и соединений между ними.

3. Вставьте элементы, как показано на рис. 3.3, и припаяйте их к выводам элементов, к тем контактным площадкам, где это необходимо, по мере движения от левого нижнего края вправо. Пунктирная линия показывает соединения проводов на тыльной стороне платы в соответствии с принципиальной схемой. Избегайте проволочных мостов, потенциальных замыканий и холодной пайки, поскольку это неизбежно вызовет проблемы. Паяные соединения должны быть блестящими и гладкими, но не шарообразными.

4. Соедините монтажную плату проводами со следующими точками (см. рис. 3.3):

– с землей шасси проводом в виниловой изоляции #18 длиной 20 см;

– с ТЕ1 проводом высокого напряжения 20 кВ длиной 10 см;

– с резистором R18, проводом в виниловой изоляции #18 длиной 20 см;

– с анодами D3 и D4 проводом в виниловой изоляции #18 длиной 30 см (земля схемы);

– с ТЗ (2) 12 В постоянного тока проводом в виниловой изоляции #22 длиной 20 см;

– с вольтметром М1 (2) проводом в виниловой изоляции #22 длиной 20 см. Проверьте все соединения, компоненты, расположение всех диодов, полупроводниковых элементов, электролитических конденсаторов CI, С2, С4, С5, С7. Проверьте качество паек, потенциальные короткие замыкания, наличие мест холодной пайки. Паяные соединения должны быть гладкими и блестящими, но не шарообразными. Тщательно проверьте это, прежде чем включать устройство.

5. Сборка искрового разрядника осуществляется следующим образом (рис. 3.4):

– изготовьте базу BASE1 из листа оцинкованного железа толщиной 1,4 мм (калибр 20) и размерами 11,4×5 см (4,75×2 дюйма);

– изготовьте две скобы BRKT1 из листа оцинкованного железа толщиной 1,4 мм (калибр 20) размерами 6,4×3,2 см (2,5×1,25 дюйма) каждая. Загните край в виде козырька размером 1,9 см;

– изготовьте два блока BLK1 из поливинилхлорида (PVC) или другого аналогичного материала толщиной 1,9 см и размерами 2,5×3,2 см (1×1,25 дюйма). Они должны обладать хорошими изолирующими свойствами;

– изготовьте блок BLK2 из тефлона. Он должен выдерживать запускающий импульс высокого напряжения;

– аккуратно припаяйте фланцы COL1 к скобам BRK1. Отрегулируйте арматуру так, чтобы обеспечить точное выравнивание вольфрамовых электродов после сборки устройства. На этом этапе вам придется использовать газовую паяльную лампу на пропане и т.п.;

– сточите острые концы с восьми винтов. Это необходимо для предотвращения поломки материала PVC из-за коронного разряда, образующегося на острых концах при высоком напряжении;

– предварительно соберите детали, просверлите в них необходимые отверстия для сборки. Для правильного размещения следуйте рисунку;

Рис. 3.4. Искровой разрядник и устройство зажигания

Примечание:

Искровой разрядник является сердцем системы, и именно там энергия, накопленная конденсаторами за весь период заряд а, быстро высюобомиается в нагрузку в виде обладающего высокой мощностью импульса. Очень важно, чтобы все соединения были способны выдерживать большие токи и высокое напряжение разряда.

Показанный здесь прибор предназначен для НЕР90 и способен обеспечивать переключение при энергии до 3000 Дж (при правильно отрегулированном импульсе), чего обычно достаточно для эффективного проведения экспериментов с устройствами перемещения масс, сгибания банок, взрывания проводов, магнетизма и других аналогичных проектов.

По специальному заказу может быть поставлен переключатель высокой энергии, способный работать с энергией 20000Дж. Оба переключателя используют высоковольтный запускающий импульс, который зависит от высокого импеданса нагрузки линии. Обычно это не является проблемой для нагрузок сумеренной индуктивностью, но может стать проблемой при малой индуктивности. Эту проблему можно решить, если поместить несколько ферритовых или кольцевых сердечников в эти линии. Сердечники реагируют на запускающий импульс очень сильно, но при основном разряде достигают насыщения.

Конструкция искрового разрядника должна учитывать механические силы, которые возникают в результате действия сильных магнитных полей. Это очень важно при работе с ф дхжой энергией и потребует дополнительных средств для уменьшения индуктивности и сопротивления.

Внимание! При проведении экспериментов вокруг устройства должен быть установлен экран для защиты оператора от возможных осколков при поломке устройства.

Для надежного запуска запускающий зазор должен быть установлен в зависимости от напряжения заряд а. Зазор должен быть расположен не менее чем в 0,6 см от скобы. Если включение нестабильно, нужно поэкспериментировать с этой величиной.

– присоедините большие блочные наконечники LUG1 к каждой стороне скоб BRKT1. Соединение должно быть выполнено тщательно, поскольку импульсный ток достигает величины килоампер;

– временно установите основной зазор на величину 0,16 см, а запускающий зазор – на величину 0,32 см.

Порядок окончательной сборки устройство

Ниже указаны этапы окончательной сборки:

1. Изготовьте шасси и панель, как показано на рис. 3.5. Разумно будет проделать в панели квадратное отверстие для установки вольтметра до изготовления панели. Вольтметр, который используется, требует квадратного отверстия со стороной 10 см. Другие, более мелкие отверстия могут быть определены по чертежу и просверлены после соединения шасси и панели.

Примечание:

Изготовьте переднюю панель из листа оцинкованного железа толщиной 1,54 см (калибр 22) размерами 53,34×21,59 см (21×8,5 дюйма). Загните с каждой стороны по5 см для соединения с шасси, как показано на рисунке. Проделайтеотверстиедля вольтметра.

Изготовьте шасси из оцинкованного железа толщиной 1,54 см (калибр 22) размерами55,88×27,9см (22×15 дюйма). Загните с каждой стороны по 5 см и сделайте козырек 1,25 см. Общий размер будет (25x43x5см) с козырьком 1,25 см по дну шасси.

Более мелкие отверстия и отверстия для соединений выполняйте по ходу дальнейшей работы.

Идущий поданной части шасси козырек на рисунке не показан.

Рис. 3.5. Чертеж для изготовления шасси

2. Примерьте контрольную панель и просверлите необходимые отверстия для средств управления, индикаторов и т.д. Обратите внимание на изоляционный материал между шасси и частями устройства, см. на рис. 3.6 часть PLATE1. Этого можно добиться с помощью небольшого количества силиконового клея-герметика RTV с комнатной температурой вулканизации. Просверливайте соответствующие отверстия по мере выполнения работы, проверяя правильность расположения и габаритов.

Рис. 3.6. Общий вид устройства в сборе

Примечание:

Провода показаны несколько удлиненными, чтобы обеспечить ясность изображений и соединений.

Пунктирные линии показывают элементы и соединения, расположенные под шасси.

3. Примерьте остальные части (см. рис. 3.6) и просверлите все необходимые для монтажа и размещения отверстия. Обратите внимание на держатели плавких предохранителей FH1 /FS1 и изоляцию шнура входного питания BU2. Они расположены на нижней стороне шасси и показаны пунктирными линиями.

4. Обеспечьте достаточное пространство для высоковольтных компонентов: для выходных контактов трансформатора, диодов высокого напряжения и резистора R18. Обратите внимание, что высоковольтные диоды устанавливаются на пластиковую плату с помощью двухсторонней липкой ленты RTV.

5. Установите на место контрольную панель. Закрепите монтажную плату с помощью нескольких кусочков ленты с нанесенным на нее клеем-герме- тиком RTV, когда убедитесь, что все нормально.

6. Выполните все соединения. Обратите внимание на использование гаек для провода при подключении выводов Т1 и Т2.

Предварительные электрические испытания

Для проведения предварительных электрических испытаний выполните следующие действия:

1. Закоротите выходные контакты трансформатора с помощью высоковольтного провода с зажимом.

2. Удалите плавкий предохранитель и установите в его держатель барретер 60 Вт (электровакуумный прибор для стабилизации тока) в качестве балластного сопротивления на период тестирования.

3. Установите переключатель S4 (см. рис. 3.7) в выключенное состояние, переведите ось совмещенного с переменным сопротивлением R8/S2 выключателя в положение «выключено», установите переменные сопротивления R14 и R19 в среднее положение и включите устройство в сеть 115 В переменного тока, вставив вилку шнура питания COl в розетку.

4. Поворачивайте ось совмещенного выключателя с переменным сопротивлением R8 до включения и наблюдайте, как загораются лампы LA1 и LA2.

5. Нажмите кнопку заряда S3 и удостоверьтесь, что реле RE1 включилось (слышен звук щелчка) и лампа LA2 погашена на время, пока нажата кнопка S3.

6. Включите S4 и нажмите S3, заметьте, что барретер, включенный в соответствии с пунктом 2, горит в полнакала.

7. Нажмите кнопку «Пуск» S1 и наблюдайте вспышку между запускающим электродом ТЕ1 и основным зазором разряда между G1 и G2. Обратите

Рис. 3.7. Передняя панель и органы управления

внимание, что ось переменного сопротивления установлена в среднее значение, но, поворачивая ось по часовой стрелке, можно увеличить разряд.

Основные испытания

Для проведения испытаний выполните следующие действия:

1. Выньте шнур питания из сети и выключите S2 и S4.

2. Подсоедините конденсатор 30 мкФ, 4 кВ и резистор 5 кОм, 50 Вт в качестве С и R, как показано на рис. 3.6.

3. Удалите балластную лампу и вставьте плавкий предохранитель 2 А.

4. Установите запускающий зазор на величину 0,32 см, а основной зазор – на 0,16 см.

5. Подключите вольтметр высокого класса точности через внешний конденсатор.

6. Включите устройство и включите S2 и S4. Нажмите кнопку S3 и убедитесь, что внешний конденсатор заряжается до величины 1 кВ до отключения RE1. Заметьте, что в нормальном состоянии LA2 горит и выключается только на время цикла заряда. Когда будет достигнут заданный заряд, светодиод LA2 снова включается, показывая, что система готова.

7. Поверните R8/S2 на 30° по часовой стрелке и заметьте, что напряжение достигает большей величины перед прекращением заряда.

8. Нажмите кнопку S1 и наблюдайте мгновенную мощную дугу в основном зазоре, которая возникает, когда энергия направляется во внешнюю нагрузку.

9. Зарядите устройство до 2500 В, измеряя напряжение по внешнему вольтметру, подсоединенному через конденсатор. Отрегулируйте R19, чтобы вольтметр на передней панели показывал значение 2,5 при полной шкале 5. Сделайте пометку на передней панели, чтобы знать, где напряжение составляет 2500 В. Теперь прибор на передней панели с достаточной степенью точности показывает значение напряжения заряда при достаточной точности внешнего вольтметра. Повторите шаг 8, наблюдая интенсивную дугу при разряде. Повторите циклы заряда и разряда при разных напряжениях, чтобы ознакомиться с управлением прибором.

На этом завершается проверка и калибровка устройства. Дальнейшие операции потребуют дополнительного оборудования, в зависимости от проекта, в рамках которого вы экспериментируете.

Полезные дли донного оборудования математические соотношения

Энергия системного накопителя:

Идеальный подъем тока достигается в системах LC. Используйте коэффициент 0,75 при использовании масляных конденсаторов и более низкие значения для фото- и электролитических конденсаторов. Время достижения пикового тока на 1 А цикла:

Магнитный поток

А = площадь грани катушки в м 2 ; Le = расстояние между полюсами в м; М = масса в кг. Сила:

Ускорение: Скорость:

где t – время достижения пикового тока.

Генераторы импульсов являются важной составляющей многих радиоэлектронных устройств. Простейший генератор импульсов (мультивибратор) может быть получен из двух-каскадного УНЧ (рис. 6.1). Для этого достаточно соединить вход усилителя с его выходом. Рабочая частота такого генератора определяется значениями R1C1, R3C2 и напряжением питания. На рис. 6.2, 6.3 показаны схемы мультивибраторов, полученные простой перестановкой элементов (деталей) схемы, изображенной на рис. 6.1. Отсюда следует, что одну и ту же простейшую схему можно изобразить различными способами.

Практические примеры использования мультивибратора приведены на рис. 6.4, 6.5.

На рис. 6.4 показана схема генератора, позволяющего плавно перераспределять длительность или яркость свечения светодиодов, включенных в качестве нагрузки в цепи коллекторов. Вращением ручки потенциометра R3 можно управлять соотношением длительностей свечения светодиодов левой и правой ветвей. Если увеличить емкость конденсаторов С1 и С2, частота генерации понизится, светодиоды начнут мигать. При уменьшении емкости этих конденсаторов частота генерации возрастает, мелькание светодиодов сольется в сплошное свечение, яркость которого будет зависеть от положения ручки потенциометра R3. На основе подобного схемного решения могут быть собраны разнообразные полезные конструкции, например, регулятор яркости светодиодного фонарика; игрушка с мигающими глазами; устройство плавного изменения спектрального состава источника излучения (разноцветные светодиоды или миниатюрные лампочки и светосуммирую-щий экран).

Генератор переменной частоты (рис. 6.5) конструкции В. Цибульского позволяет получать плавно изменяющееся со временем по частоте звучание [Р 5/85-54]. При включении генератора его частота возрастает с 300 до 3000 Гц за 6 сек (при емкости конденсатора СЗ 500 мкФ). Изменение емкости этого конденсатора в ту или иную сторону ускоряет или, напротив, замедляет скорость изменения частоты. Плавно изменять эту скорость можно и переменным сопротивлением R6. Для того чтобы этот генератор мог выполнять роль сирены, или быть использованным в качестве генератора качающейся частоты, можно предусмотреть схему принудительного периодического разряда конденсатора СЗ. Такие эксперименты можно рекомендовать для самостоятельного расширения познаний в области импульсной техники.

Управляемый генератор прямоугольных импульсов показан на рис. 6.6 [Р 10/76-60]. Генератор также представляет собой двухкаскадный усилитель, охваченный положительной обратной связью. Для упрощения схемы генератора достаточно соединить эмиттеры транзисторов конденсатором. Емкость этого конденсатора определяет рабочую частоту генерации. В данной схеме для управления частотой генерации в качестве управляемой напряжением емкости использован варикап. Увеличение запирающего напряжения на варикапе приводит к уменьшению его емкости. Соответственно, как показано на рис. 6.7, возрастает рабочая частота генерации.

Варикап, в порядке эксперимента и изучения принципа работы этого полупроводникового прибора, можно заменить простым диодом. При этом следует учитывать, что германиевые точечные диоды (например, Д9) имеют очень малую начальную емкость (порядка нескольких пФ), и, соответственно, обеспечивают небольшое изменение этой емкости от величины приложенного напряжения. Кремниевые диоды, особенно силовые, рассчитанные на большой ток, а также стабилитроны, имеют начальную емкость 100... 1000 пФ, поэтому зачастую могут быть использованы вместо варикапов. В качестве варикапов можно применить и р-n переходы транзисторов, см. также главу 2.

Для контроля работы сигнал с генератора (рис. 6.6) можно подать на вход частотометра и проверить границы перестройки генератора при изменении величины управляющего напряжения, а также при смене варикапа или его аналога. Рекомендуется полученные результаты (значения управляющего напряжения и частоту генерации) при использовании разного вида варикапов занести в таблицу и отобразить на графике (см., например, рис. 6.7). Отметим, что стабильность генераторов на RC-элементах невысока.

На рис. 6.8, 6.9 показаны типовые схемы генераторов световых и звуковых импульсов, выполненные на транзисторах различного типа проводимости. Генераторы работоспособны в широком диапазоне питающих напряжений. Первый из них вырабатывает короткие вспышки света частотой единицы Гц, второй — импульсы звуковой частоты. Соответственно, первый генератор может быть использован в качестве маячка, светового метронома, второй — в качестве звукового генератора, частота колебаний которого зависит от положения ручки потенциометра R1. Эти генераторы можно объединить в единое целое. Для этого достаточно один из генераторов включить в качестве нагрузки другого, либо параллельно ей. Например, вместо цепочки из светодиода HL1, R2 или параллельно ей (рис. 6.8) можно включить генератор по схеме на рис. 6.9. В итоге получится устройство периодической звуковой или светозвуковой сигнализации.

Генератор импульсов (рис. 6.10), выполненный на составном транзисторе (п-р-п и р-п-р), не содержит конденсаторов (в качестве частотозадающего конденсатора использован пьезокерамиче-ский излучатель BF1). Генератор работает при напряжении от 1 до 10 Б и потребляет ток от 0,4 до 5 мА. Для повышения громкости звучания пьезокерамического излучателя его настраивают на резонансную частоту подбором резистора R1.

На рис. 6.11 показан достаточно оригинальный генератор релаксационных колебаний, выполненный на биполярном лавинном транзисторе.

Генератор содержит в качестве активного элемента транзистор микросхемы К101КТ1А с инверсным включением в режиме с «оборванной» базой. Лавинный транзистор может быть заменен его аналогом (см. рис. 2.1).

Устройства (рис. 6.11) часто используют для преобразования измеряемого параметра (интенсивности светового потока, температуры, давления, влажности и т.д.) в частоту при помощи резистивных или емкостных датчиков.

При работе генератора конденсатор, подключенный параллельно активному элементу, заряжается от источника питания через резистор. Когда напряжение на конденсаторе достигает напряжения пробоя активного элемента (лавинного транзистора, динистора или т.п. элемента), происходит разряд конденсатора на сопротивление нагрузки, после чего процесс повторяется с частотой, определяемой постоянной RC-цепи. Резистор R1 ограничивает максимальный ток через транзистор, препятствуя его тепловому пробою. Времязадающая цепь генератора (R1C1) определяет рабочую область частот генерации. В качестве индикатора звуковых колебаний при качественном контроле работы генератора используют головные телефоны. Для количественной оценки частоты к выходу генератора может быть подключен частотомер или счетчик импульсов.

Устройство работоспособно в широком интервале изменения параметров: R1 от 10 до 100 кОм (и даже до 10 МОм), С1 — от 100 пФ до 1000 мкФ, напряжения питания от 8 до 300 В. Потребляемый устройством ток обычно не превышает одного мА. Возможна работа генератора в ждущем режиме: при замыкании базы транзистора на землю (общую шину) генерация срывается. Преобразователь-генератор (рис. 6.11) может быть использован и в режиме сенсорного ключа, простейшего Rx-и Сх-метра, перестраиваемого широкодиапазонного генератора импульсов и т.д.

Генераторы импульсов (рис. 6.12, 6.13) также выполнены на лавинных транзисторах микросхемы К101КТ1 типа п-р-п или К162КТ1 типа р-п-р, динисторах, или их аналогах (см. рис. 2.1). Генераторы работают при напряжении питания выше 9 Б и вырабатывают напряжение треугольной формы. Выходной сигнал снимается с одного из выводов конденсатора. Входное сопротивление следующего за генератором каскада (сопротивление нагрузки) должно в десятки раз превышать величину сопротивления R1 (или R2). Низкоомную нагрузку (до 1 кОм) можно включать в коллекторную цепь одного из транзисторов генератора.

Довольно простые и часто встречающиеся на практике генераторы импульсов (блокинг-генераторы) с использованием индуктивной обратной связи показаны на рис. 6.14 [А. с. СССР 728214], 6.15 и 6.16. Такие генераторы обычно работоспособны в широком диапазоне изменения напряжения питания. При сборке блокинг-генераторов необходимо соблюдать фазировку выводов: при неправильном подключении «полярности» обмотки генератор не заработает.

Подобные генераторы можно использовать при проверке трансформаторов на наличие межвитковых замыканий (см. главу 32): никаким иным методом такие дефекты не могут быть выявлены.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

Назначение этих устройств понятно из названия. С их помощью создают импульсы, которые обладают определёнными параметрами. При необходимости можно приобрести аппарат, изготовленный с применением фабричных технологий. Но в данной статье будут рассмотрены принципиальные схемы и технологии сборки своими руками. Эти знания пригодятся для решения разных практических задач.

Как выглядит генератор импульсов Г5-54

Необходимость

При нажатии клавиши электромузыкального инструмента, электромагнитные колебания усиливаются и поступают на громкоговоритель. Слышен звук определённого тона. В этом случае используется генератор синусоидального сигнала.

Для слаженной работы памяти, процессоров, других составных частей компьютера необходима точная синхронизация. Образцовый сигнал с неизменной частотой создаётся тактовым генератором.

Чтобы проверить работу счётчиков, других электронных устройств, выявить неисправности, применяют единичные импульсы с необходимыми параметрами. Такие задачи решают с помощью специальных генераторов. Обычный ручной переключатель не подойдёт, так как с его содействием не получится обеспечить определённую форму сигнала.

Параметры выходных сигналов

Перед выбором той или иной схемы, необходимо точно сформулировать цель проекта. На следующем рисунке приведён в увеличенном виде типичный прямоугольный сигнал.

Схема прямоугольного импульса

Его форма не является идеальной:

  • Напряжение возрастает постепенно. Учитывают длительность фронта. Этот параметр определяется временем, за которое импульс вырастает от 10 до 90% амплитудной величины.
  • После максимального выброса и возврата к исходному значению возникают колебания.
  • Вершина – неплоская. Поэтому длительность импульсного сигнала замеряется на условной линии, которая проведена на 10% ниже максимального значения.

Также для определения параметров будущей схемы используют понятие скважности. Этот параметр вычисляется по следующей формуле:

  • S – это скважность;
  • T – период повторения импульса;
  • t – длительность импульса.

При невысокой скважности кратковременный сигнал сложно фиксировать. Это провоцирует сбои в системах передачи информации. Если временное распределение максимумов и минимумов одинаковое, параметр будет равен двум. Такой сигнал называют меандром.

Меандр и основные параметры импульса

Для упрощения в дальнейшем будут рассмотрены только генераторы прямоугольных импульсов.

Принципиальные схемы

На следующих примерах можно понять принципы работы самых несложных устройств этого класса.

Схемы генераторов прямоугольных импульсов

Первая схема предназначена для формирования единичных прямоугольных импульсов. Она создана на двух логических элементах, которые соединены для выполнения функций триггера типа RS. Если кнопка находится в указанном положении, на третьей ножке микросхемы будет высокое напряжения, а на шестой – низкое. При нажатии уровни поменяются, но не возникнет дребезг контактов и соответствующие искажения выходного сигнала. Так как для работы требуется внешнее воздействие (в этом случае – ручное управление), это устройство не относится к группе автогенераторов.

Простой генератор, но выполняющий свои функции самостоятельно, изображён на второй половине рисунка. При подаче питания через резистор заряжается конденсатор. Реле срабатывает не сразу, так как после разрыва контакта, некоторое время течение тока через обмотку, обеспечивается зарядом конденсатора. После замыкания цепи этот процесс повторяется неоднократно, пока не будет отключено питание.

Изменяя номиналы сопротивления и конденсатора, можно наблюдать на осциллографе за соответствующими трансформациями частоты и других параметров сигнала. Такой генератор прямоугольных сигналов создать будет нетрудно своими руками.

Для того чтобы расширить диапазон частоты, пригодится следующая схема:

Генератор с изменяемыми параметрами импульсов

Чтобы реализовать план, двух логических элементов недостаточно. Но подобрать одну подходящую микросхему нетрудно (например, в серии К564).

Параметры сигнала, которые можно изменить регулировкой своими руками, другие важные параметры

Элемент принципиальной схемы Предназначение и особенности
VT1 Этот полевой транзистор использован для того, чтобы в цепи обратной связи можно было применить резисторы с высоким сопротивлением.
C1 Допустимая ёмкость конденсатора – от 1 до 2 мкФ.
R2 Величина сопротивления определяет длительность верхних частей импульсов.
R3 Этот резистор – устанавливает длительность нижних частей.

Чтобы обеспечить стабильность частоты прямоугольных сигналов, используют схемы на кварцевых элементах:

Видео. Высоковольтный генератор импульсов своими руками

Чтобы своими руками было проще собрать генератор импульсов определённой частоты, лучше использовать универсальную монтажную плату. Она пригодится для экспериментов с разными принципиальными электрическими схемами. После приобретения навыков и соответствующих знаний, будет нетрудно создать идеальное устройство для успешного решения конкретной задачи.

Все рассмотренные выше генераторы высокого напряжения имели в качестве накопителя энергии конденсатор. Не меньший интерес представляют устройства, использующие в качестве та­кого элемента индуктивности.

В подавляющем большинстве конструкции подобного рода преобразователей ранних лет содержали механический коммута­тор индуктивности. Недостатки такого схемного решения очевид­ны: это повышенный износ контактных пар, необходимость их периодической чистки и регулировки, высокий уровень помех.

С появлением современных бьютродействующих электрон­ных коммутаторов конструкции преобразователей напряжения с коммутируемым индуктивным накопителем энергии заметно уп­ростились и стали конкурентоспособными.

Основой одного из наиболее простых вьюоковольтных ге­нераторов (рис. 12.1) является индуктивный накопитель энер­гии .

Рис. 12.1. Электрическая схема высоковольтного генератора на основе индуктивного накопителя энергии

Генератор прямоугольных импульсов собран на микросхеме 555 {КР1006ВИ1). Параметры импульсов регулируются потенцио­метрами R2 и R3. Частота импульсов управления также зависит от емкости времязадающего конденсатора 01. Импульсы с выхода генератора подаются через резистор R5 на базу ключевого (ком­мутирующего) элемента - мощного транзистора VT1.

Этот транзистор в соответствии с длительностью и частотой следования управляющих импульсов коммутирует первичную об­мотку трансформатора Т1.

В итоге на выходе преобразователя формируются импульсы вьюокого напряжения. Для защиты транзистора VT1 {2N3055 - КТ819ГМ) от пробоя желательно параллельно переходу эмит­тер - коллектор подключить диод, например, типа КД226 (като­дом к коллектору).

Высоковольтный генератор (рис. 12.2), разработанный в Болгарии, также содержит задающий генератор прямоугольных импульсов на микросхеме 555 {К1006ВИ1). Частота импульсов плавно регулируется резистором R2 от 85 до 100 Гц. Эти им­пульсы через RC-цепочки поступают на ключевью элементы на транзисторах VT1 и VT2. Стабилитроны VD3 и VD4 защища­ют транзисторы от повреждения при работе на индуктивную нагрузку.

Рис. 12.2. Схема генератора высокого напряжения на основе ин­дуктивного накопителя энергии

Генератор вьюокого напряжения (рис. 12.2) может быть ис­пользован как самостоятельно - для получения вьюокого напря­жения (обычно до 1…2 кВ), либо как промежуточная ступень «накачки» других преобразователей.

Транзисторы BD139 можно заменить на КТ943В.

В качестве ключевых элементов преобразователей с ин­дуктивным накопителем энергии долгие годы использовали мощные биполярные транзисторы. Их недостатки очевидны: до­вольно высоки остаточные напряжения на открытом ключе, как следствие, потери энергии, перегрев транзисторов.

По мере совершенствования полевых транзисторов послед­ние начали оттеснять биполярнью транзисторы в схемах источни­ков питания, преобразователях напряжения.

Для современных мощных полевых транзисторов сопротив­ление открытого ключа может достигать десятью…сотью доли Ома, а рабочее напряжение достигать 1 …2 кВ.

На рис. 12.3 приведена электрическая схема преобразова­теля напряжения, выходной каскад которого выполнен на полевом транзисторе MOSFET. Для согласования генератора с полевым транзистором включен биполярный транзистор с большим коэф­фициентом передачи.

Электрическая схема генератора высоковольтных им­пульсов с ключевым полевым транзистором

Задающий генератор собран на /СМО/7-микросхеме CD4049 по типовой схеме. Как сами выходные каскады, так и каскады формирования управляющих сигналов, показанные на рис. 12.1 - 12.3 и далее, взаимозаменяемы и могут быть использованы в лю­бом сочетании.

Выходной каскад генератора вьюокого напряжения системы электронного зажигания конструкции П. Брянцева (рис. 12.4) вы­полнен на современной отечественной элементной базе .

При подаче на вход схемы управляющих импульсов транзи­сторы VT1 и VT2 кратковременно открываются. В результате ка­тушка индуктивности кратковременно подключается к источнику

Рис. 12.4. Схема выходного каскада генератора высокого напря­жения П. Брянцева на составном транзисторе

Рис. 12.5. Электрическая схема генератора высокого напряжения с задающим генератором на основе триггеров Шмитта

питания. Конденсатор С2 сглаживает пик импульса напряжения. Резистивный делитель (R3 и R5) ограничивает и стабилизирует максимальное напряжение на коллекторе транзистора VT2.

В качестве трансформатора Т1 использована катушка зажи­гания Б115. Ее основные параметры: Ri=1,6 Ом, \

Следующие две схемы вьюоковольтных генераторов нап­ряжения с использованием индуктивных накопителей энергии (рис. 12.5, 12.6) разработал Andres Estaban de la Plaza .

Первое из устройств содержит задающий генератор прямоугольных импульсов, промежуточный и выходной каскад, вьюоковольтный трансформатор.

Электрическая схема генератора высокого напряжения с задающим генератором на основе операционного усилителя

Задающий генератор выполнен на основе триггера Шмитта (КМО/7-микросхема типа 4093). Использование триггера Шмитта вместо логических элементов НЕ (см. например, рис. 12.3) позво­ляет получить импульсы с более крутыми фронтами, и, следова­тельно, снизить потери энергии на ключевых элементах.

Согласование КМО/7-элементов с силовым транзистором VT2 осуществляется предусилителем на транзисторе VT1. Вы­ходной трансформатор Т1 коммутируется силовым биполярным транзистором VT2. Этот транзистор установлен на теплоотводя-щей пластине.

Частота импульсов генератора ступенчато изменяется пе­реключателем SA1. Соотношение между длительностью импуль­са и паузой и частоту следования импульсов плавно регулируют потенциометрами R1 и R2.

Переключателем SA2 включают/отключают резистор R6, включенный последовательно с первичной обмоткой повышаю­щего трансформатора. Тем самым ступенчато регулируют выход­ную мощность преобразователя.

Рабочая частота генератора в его пяти поддиапазонах ре­гулируется в пределах 0,6…8,5 кГц; 1,5…20 кГц; 5,3…66 кГц; A3…МО кГц; 43…>200 кГц.

Первичная обмотка трансформатора Т1, намотанная на сердечнике от трансформатора строчной развертки, имеет 40 витков диаметром 1,0 мм. Выходное напряжение преобразовате­ля на частотах ниже 5 кГц составляет 20 кВ, в области частот 50…70 кГц выходное напряжение снижается до 5… 10 /св.

Выходная мощность высокочастотного сигнала устройства может доходить до 30 Вт. В этой связи при использовании данной конструкции, например, для газоразрядной фотосъемки необхо­димо принять особые меры по ограничению выходного тока.

Вьюоковольтный генератор, рис. 12.6 , имеет более сложную конструкцию.

Его задающий генератор выполнен на операционном уси­лителе DA1 {СА3140), Для питания задающего генератора и бу­ферного каскада (микросхема DDI типа 4049) используется стабилизатор напряжения на 12 S на интегральной микросхеме DA2 типа 7812.

Предоконечный каскад на комплиментарных транзисторах VT1 и VT2 обеспечивает работу оконечного - на мощном транзи­сторе VT3.

Соотношение длительность/пауза регулируют потенциомет­ром R7, а частоту импульсов - потенциометром R4.

Частоту генерации можно изменять ступенчато - переклю­чением емкости конденсатора С1. Начальная частота генерации близка к 20 кГц.

Первичная обмотка доработанного трансформатора строч­ной развертки имеет 5… 10 витков, ее индуктивность примерно 0,5 мГн. Защита выходного транзистора от перенапряжения осуществляется включением варистора R9 параллельно этой обмотке.

Транзистор 2N2222 можно заменить на КТ3117А, КТ645; 2N3055 - на КТ819ГМ; BD135 - на КТ943А, BD136 - на КТ626А, диоды 1N4148 - на КД521, КД503 и др. Микросхему DA2 можно заменить отечественным аналогом - КР142ЕН8Б{Д); DDI - К561ТЛ1.

Следующим видом генераторов вьюоковольтного напряже­ния являются автогенераторнью преобразователи напряжения с индуктивной обратной связью.

Импульсный преобразователь с самовозбуждением выра­батывает пакеты высокочастотных высоковольтных колебаний (рис. 12.7) .

Рис. 12.7. Электрическая схема импульсного преобразователя напряжения с самовозбуждением

Автогенератор импульсов высокого напряжения на транзи­сторе VT1 получает*сигнал обратной связи с трансформатора Т1 и в качестве нагрузки имеет катушку зажигания Т2. Частота гене­рации - около 150 Гц. Конденсаторы С*, С2 и резистор R4 опре­деляют режим работы генератора.

Трансформатор Т1 выполнен на магнитопроводе Ш 14×18. Обмотка I состоит из 18 витков провода ПЭВ-2 0,85 мм, намотан­ных в два провода, а II - из 72 витков провода ПЭЛШО 0,3 мм.

Стабилитрон VD2 укреплен в центре дюралюминиевого ра­диатора размерами 40x40x4 мм. Этот стабилитрон можно заме­нить цепочкой мощных стабилитронов с суммарным напряжением стабилизации 150 В. Транзистор VT1 также установлен на радиа­торе размерами 50x50x4 мм.

Резонансный преобразователь напряжения с самовозбуж­дением описан в работе Е. В. Крылова (рис. 12.8). Он выполнен на высокочастотном мощном транзисторе VT1 типа КТ909А .

Трансформатор преобразователя выполнен на фторопла­стовом каркасе диаметром 12 мм с использованием ферритового стержня 150ВЧ размером 10×120 мм. Катушка L1 содержит 50 витков, L2 - 35 витков провода ЛЭШО 7×0,07 мм. Катушки низко­вольтной половины устройства имеют по одному витку провода во

Рис. 12.8. Схема резонансного высоковольтного генератора с трансформаторной обратной связью

фторопластовой (политетрафторэтиленовой) изоляции. Они на­мотаны поверх катушки L2.

Выходное напряжение преобразователя составляет 1,5 кВ (максимальное - 2,5 кВ). Частота преобразования - 2,5 МГц. Потребляемая мощность - 5 Вт. Выходное напряжение устройст­ва изменяется от 50 до 100% при увеличении напряжения питания с 8 до 24 В.

Конденсатором переменной емкости 04 трансформатор настраивают на резонансную частоту. Резистором R2 устанавли­вают рабочую точку транзистора, регулируют уровень положи­тельной обратной связи и форму генерируемых сигналов.

Преобразователь безопасен в работе - при низкоомной на­грузке вьюокочастотная генерация срывается.

Следующая схема вьюоковольтного источника импульсно­го напряжения с двухкаскадным преобразованием показана на рис. 12.9 . Электрическая схема его первого каскада доста­точно традиционна и практически не отличается от рассмотрен­ных ранее конструкций.

Отличие устройства (рис. 12.9) заключается в использова­нии второго каскада повышения напряжения на трансформаторе. Это заметно повышает надежность устройства, упрощает конст­рукцию трансформаторов и обеспечивает эффективную изоля­цию между входом и выходом устройства.

Трансформатор Т1 выполнен на Ш-образном сердечнике из трансформаторной стали. Сечение сердечника составляет

Рис. 12.9. Схема высоковольтного преобразователя с трансфор­маторной обратной связью и двойным трансформатор­ным преобразованием напряжения

16×16 мм. Коллекторные обмотки I имеют 2×60 витков провода диаметром 1,0 мм.

Катушки обратной связи II содержат 2×14 витков провода диаметром 0,7 мм. Повышающая обмотка III трансформатора Т1, намотанная через несколько слоев межслойной изоляции, имеет 20… 130 витков провода диаметром 1,0 мм. В качестве выходного (вьюоковольтного) трансформатора использована катушка зажи­гания автомобиля на 12 или 6 В.

К генераторам вьюокого напряжения с индуктивными нако­пителями энергии следует отнести и устройства, рассмотреннью ниже.

Для получения вьюоковольтных наносекундных импульсов В. С. Белкиным и Г. И. Шульженко была разработана схема формирователя на дрейфовых диодах и насыщающейся индуктивностью с однотактным преобразователем, синхронизи­рованным с формирователем, а также показана возможность со­вмещения функций ключа формирователя и преобразователя.

Схема преобразователя, синхронизированного с формиро­вателем, приведена на рис. 12.10; вариант схемы формирователя с раздельными ключевыми элементами приведен на рис. 12.11, а временные диаграммы, характеризующие работу отдельных уз­лов схемы формирователя, - на рис. 12.12.

Задающий генератор прямоугольных импульсов (рис. 12.10) вырабатывает импульсы, отпирающие транзисторный ключ VT1

Рис. 12.10. Схема формирователя высоковольтных импульсов с общим ключом для преобразователя и формирователя

Рис. 12.11. Фрагмент схемы формирователя высоковольтных им­пульсов с раздельными ключами

Рис. 12.12. Временная диаграмма работы преобразователя

на время 1н и запирающие на время \^ (рис. 12.12). Их сумма опре­деляет период повторения импульсов. За время через дроссель L1 протекает ток I„. После запирания транзистора ток через диод VD1 заряжает накопительную емкость формирователя С1 до напряжения и^, диод VD1 закрывается и отсекает конденсатор С1 от источника питания.

В таблице 12.1 приведены данные по возможному исполь­зованию полупроводниковых приборов в формирователе вы­соковольтных импульсов. Амплитуда формируемых импульсов приведена для низкоомной нагрузки величиной 50 Ом.

Таблица 12.1. Выбор элементов для формирователей высоковольтных импульсов

Длительность им­пульса, НС

Амплитуда генерируемого импульса, В

КД204, КД226 {КТ858, КТ862)

ДЛ112-25{КТ847)

ДЛ122-40 {КП953)

КД213 {КТ847)

ДЛ132-80 {КП953)

Формирователи двухполярных импульсов на основе серий­ных диодов имеют амплитуду каждой полуволны 0,2… 1 кВ для согласованной нагрузки 50…75 Ом при полной длительности им­пульса 4…30 НС и частоте повторения до 20 кГц.

В данной статье поговорим про импульсный генератор для ячейки Мэйера.

Изучая элементную базу электронных плат, на которых были собраны все устройства входящие в состав сложной установки, применяемой Мэйером в водородном генераторе, установленном им на автомобиль, я собрал «главную часть» устройства – импульсный генератор.

Все электронные платы выполняют в Ячейке определённые задачи.

Электронная часть мобильной установки генератора водорода Мэйера состоит из двух полноценных устройств, оформленных в виде двух независимых блоков. Это блок управления и контроля ячейки, вырабатывающей кислородно-водородную смесь и блок управления и контроля за подачей этой смеси в цилиндры двигателя внутреннего сгорания. Фотография первого представлена ниже.

Блок управления и контроля за работой ячейки состоит из устройства вторичного питания обеспечивающего все платы модуля энергией и одиннадцати модулей – плат, состоящих из генераторов импульсов, схем контроля и управления. В этом же блоке, за платами импульсных генераторов находятся импульсные трансформаторы. Один из одиннадцати комплектов: плата импульсного генератора и импульсного трансформатора используется конкретно только для одной пары трубок Ячейки. А поскольку пар трубок одиннадцать, то и генераторов тоже одиннадцать.

.

Судя по фотографиям, импульсный генератор собран на простейшей элементной базе цифровых логических элементов. Принципиальные схемы, публикуемые на различных сайтах, посвящённых Ячейке Мэйера, по принципу работы не так далеки от её оригинала, за исключением одного – они упрощены и работают бесконтрольно. Другими словами, импульсы подаются на трубки-электроды до той поры, пока не наступит «пауза», которую по своему усмотрению оперативно с помощью регулировки устанавливает конструктор схемы. У Мэйера «пауза» формируется только тогда, когда сама Ячейка, состоящая из двух трубок, сообщит что пора бы эту паузу сделать. Имеется регулировка чувствительности схемы контроля, уровень которой устанавливается оперативно с помощью регулировки. Кроме того, имеется оперативная регулировка длительности «паузы» — времени, в течение которого на ячейку не поступают импульсы. В схеме генератора Мэйера предусмотрена автоматическая регулировка «паузы» в зависимости от необходимости количества вырабатываемого газа. Эта регулировка осуществляется по сигналу, поступающему от блок управления и контроля за подачей топливной смеси в цилиндры ДВС. Чем быстрее вращается двигатель внутреннего сгорания, тем больше расход кислородно-водородной смеси и тем короче «пауза» у всех одиннадцати генераторов.

На переднюю панель генератора Мэйера выведены шлицы подстроечных резисторов осуществляющих регулировку частоты импульсов, длительности паузы между пачками импульсов и ручной установки уровня чувствительности схемы контроля.

Для репликации опытного импульсного генератора нет необходимости в автоматическом контроле потребности газа и автоматическом регулировании «паузы». Это упрощает электронную схему импульсного генератора. Кроме того, современная электронная база более развита, чем была 30 лет назад, поэтому при наличии более современных микросхем, нет смысла использовать простейшие логические элементы, которые ранее использовал Мэйер.

В настоящей статье публикуется схема импульсного генератора, собранного мной, воссоздающего принцип работы генератора ячейки Мэйера. Это не первая моя конструкция импульсного генератора, до неё было ещё две более сложных схемы, способных генерировать импульсы различной формы, с амплитудной, частотной и временной модуляцией, схемами контроля тока нагрузки в цепях трансформатора и самой Ячейки, схемами стабилизации амплитуд импульсов и формы выходного напряжения на Ячейке. В результате исключения, по моему мнению «ненужных» функций получилась простейшая схема, очень похожая на схемы, публикуемые на различных сайтах, но отличающаяся от них наличием схемы контроля тока Ячейки.

Как и в других публикуемых схемах, в ячейке имеются два генератора. Первый является генератором – модулятором, формирующим пачки импульсов, а второй генератором импульсов. Особенностью схемы является то, что первый генератор — модулятор работает не в режиме автогенератора, как у других разработчиков схем Ячейки Мейера, а в режиме ждущего генератора. Модулятор работает по следующему принципу: На начальном этапе он разрешает работу генератора, а по достижении непосредственно на пластинах Ячейки определённой амплитуды тока, происходит запрет генерации.

В мобильной установке Мэйера в качестве импульсного трансформатора используется тонкий сердечник, а количество витков всех обмоток огромное. Ни в одном патенте не указаны ни размеры сердечника, ни количество витков. В стационарной установке у Мэйера замкнутый торроид с известными размерами и количеством витков. Именно его и решено было использовать. Но поскольку тратить энергию впустую на намагничивание в однотактной схеме генератора это – расточительство, было решено использовать трансформатор с зазором, взяв за основу ферритовый сердечник от строчного трансформатора ТВС-90 применяемого в транзисторных чёрно-белых телевизорах. Он наиболее подходит под параметры, указанные в патентах Мэйера для стационарной установки.

Принципиальная электрическая схема Ячейки Мэйера в моём исполнении представлена на рисунке.

.

Никакой сложности в конструкции генератора импульсов нет. Он собран на банальных микросхемах – таймерах LM555. По причине того, что генератор экспериментальный и неизвестно какие токи нагрузки нас могут ожидать, для надёжности в качестве выходного транзистора VT3 используется IRF.

Когда ток Ячейки достигнет определённого порога, при котором происходит разрыв молекул воды, необходимо сделать паузу в подаче импульсов на Ячейку. Для этого служит кремниевый транзистор VT1 — КТ315Б, который запрещает работу генератора. Резистор R13 «Ток срыва генерации» предназначен для установки чувствительности схемы контроля.

Переключатель S1 «Длительность грубо» и резистор R2 «Длительность точно» являются оперативными регулировками длительности паузы между пачками импульсов.

В соответствии с патентами Мэйера трансформатор имеет две обмотки: первичная содержит 100 витков (для 13 вольт питания) провода ПЭВ-2 диаметром 0,51 мм, вторичная содержит 600 витков провода ПЭВ-2 диаметром 0,18 мм.

При указанных параметрах трансформатора оптимальная частота следования импульсов – 10 кГц. Катушка индуктивности L1 намотана на картонной оправке диаметром 25 мм, и содержит 100 витков провода ПЭВ-2 диаметром 0,51 мм.

Теперь, когда вы всё это «проглотили», произведём разбор полётов этой схемы. С данной схемой я не применял дополнительных схем повышающих выход газа, потому что в мобильной Ячейке Мэйера их не наблюдается, конечно не считая лазерной стимуляции. Или я забыл сходить со своей Ячейкой к «бабке – шептунье», чтобы она нашептала высокую производительность Ячейки, или не правильно выбрал трансформатор, но КПД установки получился очень низкий, а сам трансформатор сильно нагревался. Учитывая, что сопротивление воды мало, сама Ячейка не способна выступать в качестве накопительного конденсатора. Ячейка просто не работала по тому «сценарию» который описывал Мэйер. Поэтому я добавил в схему дополнительный конденсатор С11. Только в этом случае на осциллограмме выходного напряжения появилась форма сигнала, с выраженным процессом накопления. Почему я поставил его не параллельно Ячейке, а через дроссель? Схема контроля тока ячейки должна отслеживать резкое повышение этого тока, а конденсатор будет препятствовать этому своим зарядом. Катушка уменьшает влияние С11 на схему контроля.

Я использовал простую воду из под крана, использовал и свежее дистиллированную. Как я только не извращался, но затраты энергии при фиксированной производительности были в три — четыре раза выше, чем напрямую от аккумулятора через ограничительный резистор. Сопротивление воды в ячейке настолько мало, что повышение импульсного напряжения трансформатором, с лёгкостью гасилось на малом сопротивлении, заставляя магнитопровод трансформатора сильно нагреваться. Возможно, предположить, что вся причина в том, что я использовал трансформатор на феррите, а в мобильной версии Ячейки Мэйера стоят трансформаторы, у которых сердечник почти отсутствует. Он больше выполняет функцию каркаса. Не трудно понять, что Мэйер компенсировал малую толщину сердечника большим количеством витков, тем самым увеличив индуктивность обмоток. Но сопротивление воды от этого не увеличится, поэтому и напряжение, о котором пишет Мэйер, не поднимется до описываемого в патентах значения.

С целью повышения КПД я решил «выкинуть» из схемы трансформатор, на котором происходит потеря энергии. Принципиальная электрическая схема Ячейки Мэйера без трансформатора представлена на рисунке.

.

Так как индуктивность катушки L1 очень маленькая, я так же исключил её из схемы. И «о чудо» установка стала выдавать сравнительно высокий КПД. Я провёл эксперименты и пришел к выводу, что на заданный объём газа установка затрачивает ту же самую энергию, что и при электролизе постоянным током, плюс-минус погрешность измерений. То есть я наконец собрал установку, в которой не происходит потерь энергии. Но зачем она нужна, если напрямую от аккумулятора точно такие же затраты энергии?

Завершение

Завершим тему очень маленького сопротивления воды. Сама Ячейка не способна работать в качестве накопительного конденсатора потому, что вода, которая выступает в качестве диэлектрика конденсатора, быть им не может – она проводит ток. Для того, чтобы над ней совершался процесс электролиза – разложения на кислород и водород, она должна быть проводящей. Получается неразрешимое противоречие, которое возможно разрешить только по одному пути: Отказаться от версии «Ячейка-конденсатор». Накопления в Ячейке подобно конденсатору происходить не может, это Миф! Если учитывать площадь обкладок конденсатора образованного поверхностями трубок, то даже при воздушном диэлектрике ёмкость ничтожно мала, а здесь в качестве диэлектрика выступает вода со своим малым активным сопротивлением. Не верите? Возьмите учебник физики и посчитайте ёмкость.

Можно предположить, что накопление происходит на катушке L1, но этого также не может быть по той причине, что её индуктивность также очень мала для частоты порядка 10 кГц. Индуктивность трансформатора на несколько порядков выше. Можно даже задуматься над тем, зачем её с малой индуктивностью вообще «воткнули» в схему.

Послесловие

Кто-то скажет, что всё чудо в бифилярной намотке. В том виде, в каком она представлена в патентах Мэйером, толку от неё не будет. Бифилярная намотка применяется в защитных фильтрах питания, не одного и того же проводника, а противоположных по фазе и предназначена для подавления высоких частот. Она даже имеется во всех без исключения блоках питания компьютеров и ноутбуков. А для одного и того же проводника, бифилярная намотка делается в проволочном резисторе, для подавления индуктивных свойств самого резистора. Бифилярная намотка может использоваться в качестве фильтра, защищающего выходной транзистор, не пропускающего мощные СВЧ-импульсы в схему генератора, подаваемые от источника этих импульсов непосредственно на Ячейку. Кстати и катушка L1 является отличным фильтром для СВЧ. Первая схема импульсного генератора, которая использует повышающий трансформатор – правильная, только чего-то не хватает между транзистором VT3 и самой Ячейкой. Этому я посвящу следующую статью.